Modifications of Physical and Chemical Soil Properties by Application of Treated Petrochemical Effluent

1987 ◽  
Vol 19 (8) ◽  
pp. 195-204
Author(s):  
Z. Simon ◽  
M. Tedesco ◽  
P. Schneider

Wastewaters generated by Pólo Petroquímico do Sul (South Petrochemical Complex, Triunfo, Brazil) and treated up to tertiary level at SITEL (the integrated effluent treatment plant of the complex) are disposed of on land since 1983 at average rates of 140 m3/ha.day. With the purpose of studying the cumulative effect on soil properties of effluent applied under distinct conditions, four sites have been selected for comparison with adjacent blank areas. Soil samples have been taken for analyses from three different depths (0–30, 30–60 and 60–120 cm) and infiltration tests have been conducted on site. Soil pH, electrical conductivity and extractable Na, Ca and S increased in treated areas, while exchangeable Al and extractable Zn decreased. Exchangeable K and Mg and extractable P, Cu, Mn and B, as well as other toxic metals, did not show significant modifications in comparison with blank areas, with the exception of cadmium. Infiltration rates showed an average fourfold decrease in soils which underwent effluent application, due to increase in pH and exchangeable Na and decrease in Al, all these factors contributing to clay dispersion. The main alterations of forest and grassland environments consisted of trees falling caused by progressive weakening of the root system, due, in turn, to the change to a predominantly anaerobic soil environment and damage to some grass and shrub species, due to the direct impact of sprayed effluent. The observed results are compatible with the average effluent characteristics: low concentrations of toxic metals and negligible contents of residual organic toxicants, together with a high Sodium Adsorption Ratio. With respect to the chemical status of the investigated soils the service life of the disposal system can be extended to decades, provided the discharges of Cd are restricted. As far as infiltration rates are concerned, the results are worrying, however. The soils can be reclaimed by fallowing of the application areas and/or addition of Ca and Mg in order to decrease the Exchangeable Sodium Percentage.

2021 ◽  
Author(s):  
Monica Corti ◽  
Andrea Abbate ◽  
Vladislav Ivanov ◽  
Monica Papini ◽  
Laura Longoni

<p>Wildfire events have severe effects over mountain environments, changing dramatically the local terrain hydrogeological conditions and frequently affecting slope stability. Besides burning vegetation, wildfires induce a modification on soil properties that could result in a decreased capacity of infiltration. This leads to an increase of erosion and, potentially, of the related geohazards, such as flash flooding and debris flows, in the vicinity of the affected sites.</p><p>Past studies found that this reduced infiltration rate changes over time and the original hydrogeological soil properties are expected to recover in as long as 10 years after the wildfire event, depending on the environmental characteristics and on the soil properties of the site.</p><p>Our work aims to investigate the impact of a wildfire on the infiltration conditions of a slope located in the Southern Alps, considering as a case study a wildfire event occurred in Sorico (CO) in December 2018.</p><p>The effects of the wildfire on the infiltration rates and the subsequent recovery of the original hydrogeological properties were evaluated over the span of more than two years after the event. Infiltration tests were performed both within the most affected area as well as in the nearest unburnt area. Results were then correlated with precipitation and satellite imagery data in order to retrieve a recovery factor, necessary for the calibration of a simple 1D hydrogeological model.</p>


2020 ◽  
Vol 17 (4) ◽  
pp. e1105
Author(s):  
Francisco Comino ◽  
Víctor Aranda ◽  
María J. Ayora-Cañada ◽  
Antonio Díaz ◽  
Ana Domínguez-Vidal

Aim of study: To study the effect of irrigation with medium-to-low-quality water on an olive farm that seems to be causing salinity and/or sodicity problems in soils, and the ability of infrared spectroscopy to detect this problem.Area of study: The study was conducted in an olive (Olea europaea L.) grove located in Guarromán (Jaen, Spain), on the boundary of the Sierra Morena Mountains and the Guadalquivir Depression.Material and methods: The olive farm is cultivated over two soil typologies, a calcareous area (carbonated) dominated by Regosols and a siliceous area with Leptosols. Typical soil physical and chemical parameters were determined, as well as near and mid infrared spectra were collected for analysis.Main results: Soil physical properties were affected by irrigation, with low infiltration rates and symptoms of structural degradation. Chemical properties were also altered, showing high pH, low amounts of organic carbon and N, and high sodium concentrations. These effects were stronger in the samples directly affected by the irrigation bulb, with the siliceous soils more affected than carbonated, probably due to the positive effect of the higher amounts of calcium in the latter. Using infrared spectroscopy, it was possible to discriminate the samples of this farm affected by sodicity from similar soil samples in Jaen province not affected.Research highlights: the use of medium-to-low quality irrigation water affected soil physical and chemical properties. Infrared spectroscopy could be useful for quick assessment of soil quality and soil degradation from salinity and sodicity.


1988 ◽  
Vol 20 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Rurik Skogman ◽  
Reino Lammi

The requirements imposed on the Finnish forest products industry by the water authorities have focused on the reduction of BOD and suspended solids in the wastewaters. The industry has tried to comply with these requirements, first through internal measures such as process changes and closed systems. When these have not been sufficient, external treatment has been resorted to. The Wilh. Schauman Company in Jakobstad has chosen activated sludge with extended aeration from among the available methods for treating effluent. The plant has operated since the beginning of 1986 with extremely good results. In addition to the reduction of BOD and suspended solids, there has been a marked decrease of chlorinated phenols. Chlorinated substances with higher molecular weight are also removed during the process.


Author(s):  
Marcos Renan Besen ◽  
Michel Esper Neto ◽  
Bruno Maia Abdo Rahmen Cassim ◽  
Evandro Antonio Minato ◽  
Tadeu Takeyoshi Inoue ◽  
...  

2014 ◽  
Vol 69 (10) ◽  
pp. 2029-2035 ◽  
Author(s):  
M. Hallberg ◽  
G. Renman ◽  
L. Byman ◽  
G. Svenstam ◽  
M. Norling

The use of road tunnels in urban areas creates water pollution problems, since the tunnels must be frequently cleaned for traffic safety reasons. The washing generates extensive volumes of highly polluted water, for example, more than fivefold higher concentrations of suspended solids compared to highway runoff. The pollutants in the wash water have an affinity for particulate material, so sedimentation should be a viable treatment option. In this study, 12 in situ sedimentation trials were carried out on tunnel wash water, with and without addition of chemical flocculent. Initial suspended solids concentration ranged from 804 to 9,690 mg/L. With sedimentation times of less than 24 hours and use of a chemical flocculent, it was possible to reach low concentrations of suspended solids (<15 mg/L), PAH (<0.1 μg/L), As (<1.0 μg/L), Cd (<0.05 μg/L), Hg (<0.02 μg/L), Fe (<200 μg/L), Ni (<8 μg/L), Pb (<0.5 μg/L), Zn (<60 μg/L) and Cr (<8 μg/L). Acute Microtox® toxicity, mainly attributed to detergents used for the tunnel wash, decreased significantly at low suspended solids concentrations after sedimentation using a flocculent. The tunnel wash water did not inhibit nitrification. The treated water should be suitable for discharge into recipient waters or a wastewater treatment plant.


2021 ◽  
Vol 13 (7) ◽  
pp. 3617
Author(s):  
Agnieszka Medyńska-Juraszek ◽  
Agnieszka Latawiec ◽  
Jolanta Królczyk ◽  
Adam Bogacz ◽  
Dorota Kawałko ◽  
...  

Biochar application is reported as a method for improving physical and chemical soil properties, with a still questionable impact on the crop yields and quality. Plant productivity can be affected by biochar properties and soil conditions. High efficiency of biochar application was reported many times for plant cultivation in tropical and arid climates; however, the knowledge of how the biochar affects soils in temperate climate zones exhibiting different properties is still limited. Therefore, a three-year-long field experiment was conducted on a loamy Haplic Luvisol, a common arable soil in Central Europe, to extend the laboratory-scale experiments on biochar effectiveness. A low-temperature pinewood biochar was applied at the rate of 50 t h−1, and maize was selected as a tested crop. Biochar application did not significantly impact the chemical soil properties and fertility of tested soil. However, biochar improved soil physical properties and water retention, reducing plant water stress during hot dry summers, and thus resulting in better maize growth and higher yields. Limited influence of the low-temperature biochar on soil properties suggests the crucial importance of biochar-production technology and biochar properties on the effectiveness and validity of its application in agriculture.


2013 ◽  
Vol 838-841 ◽  
pp. 2712-2716
Author(s):  
Yong Tu ◽  
Yong Gang Bai ◽  
Yong Chen ◽  
Wei Jing Liu ◽  
Jun Xu ◽  
...  

The research on ultrafiltration membrane assisted by powdered zeolite for the treatment of secondary effluent from a municipal wastewater treatment plant was studied. The results show that membrane fouling rate is reduced by pre-coating the ultrafiltration membrane with powdered zeolite, and the treatment performance of secondary effluent is enhanced. UV-vis, three-dimensional excitation emission matrix (3D-EEM) fluorescence spectra and scanning electron microscopy (SEM) images for ultrafiltration were also discussed.


1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


Sign in / Sign up

Export Citation Format

Share Document