Treatment of tunnel wash water and implications for its disposal

2014 ◽  
Vol 69 (10) ◽  
pp. 2029-2035 ◽  
Author(s):  
M. Hallberg ◽  
G. Renman ◽  
L. Byman ◽  
G. Svenstam ◽  
M. Norling

The use of road tunnels in urban areas creates water pollution problems, since the tunnels must be frequently cleaned for traffic safety reasons. The washing generates extensive volumes of highly polluted water, for example, more than fivefold higher concentrations of suspended solids compared to highway runoff. The pollutants in the wash water have an affinity for particulate material, so sedimentation should be a viable treatment option. In this study, 12 in situ sedimentation trials were carried out on tunnel wash water, with and without addition of chemical flocculent. Initial suspended solids concentration ranged from 804 to 9,690 mg/L. With sedimentation times of less than 24 hours and use of a chemical flocculent, it was possible to reach low concentrations of suspended solids (<15 mg/L), PAH (<0.1 μg/L), As (<1.0 μg/L), Cd (<0.05 μg/L), Hg (<0.02 μg/L), Fe (<200 μg/L), Ni (<8 μg/L), Pb (<0.5 μg/L), Zn (<60 μg/L) and Cr (<8 μg/L). Acute Microtox® toxicity, mainly attributed to detergents used for the tunnel wash, decreased significantly at low suspended solids concentrations after sedimentation using a flocculent. The tunnel wash water did not inhibit nitrification. The treated water should be suitable for discharge into recipient waters or a wastewater treatment plant.

1992 ◽  
Vol 25 (4-5) ◽  
pp. 233-240
Author(s):  
T. Palmgren

Due to the slow growth of nitrification bacteria at low temperatures, nitrogen reduction normally requires long hydraulic retention time during winter. Important for the nitrification process is the aerated sludge age. Factors influencing the sludge age are aerated volume, mixed liquor suspended solids concentration, organic loading and sludge yield. In an existing plant you cannot easily expand the volume and the load is difficult to decrease. But the suspended solids concentration can be increased by running the biological step with the contact stabilisation process. At the Käppala Association sewage treatment plant in Lidingö just outside Stockholm, one of the six aeration tanks has been reconstructed for full scale nitrogen removal experiments. In this tank the old aeration system has been replaced with rubber membrane diffusers. Further more there are several zones separated by walls in the tank. The tank can thereby be run with great flexibility. By running it with the contact stabilisation process, the sludge age has been improved by a factor between 1.5 and 2 and thereby it succeeds in keeping the nitrification bacteria in the system even during snow melting. At temperatures of about 9 °C and hydraulic retention times of less than 3 hours in the contact zone there has been a nitrification degree of up to 50 to 60 %. The experiment was conducted with a stabilisation zone of up to half the total volume of the aeration tank. The main purpose for the experiments during the winter seasons was to improve nitrification. Keeping the nitrifiers in the system had been a crucial problem during previous years. When the nitrifiers were lost with an increased flow and decreased temperature the nitrification process didn't restart until the temperature was increased and the load decreased. Usually this didn't occur until the middle of the summer meaning a loss of nitrification for up to six months. In Sweden there is a goal set for 50 % nitrogen reduction for the plants in the Stockholm region. At Käppala we manage to keep 60 to 70 % nitrogen reduction during the warm season, that is from July to December. If we can keep up the nitrification the whole year we can achieve 50 % as a yearly average under normal conditions even though we can't keep the nitrogen reduction rate as high during the cold season.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 143-152 ◽  
Author(s):  
M. Tendaj-Xavier ◽  
J. Hultgren

Bromma sewage treatment plant is the second largest plant in Stockholm with a design flow of 160,000 m3/d. The wastewater is treated mechanically, chemically by pre-precipitation with ferrous sulphate, and biologically by the activated sludge process. The requirements for the plant are 8 mg BOD7/l, 0.4 mg P/l and 2 mg NH4+-N/l. The requirement for ammonia refers to the period July-October. In order to meet those rather stringent requirements, the biological step was expanded 3 years ago with 6 new sedimentation tanks. The 6 new tanks have the same area as the 6 old ones but they have only a depth of 3.7 m compared with the depth of the old tanks, 5.7 m. Experience from the first years of operation of the new tanks is that these tanks are more sensitive and less efficient than the older ones. It seems that the effluent suspended solids concentration from the old tanks is less influenced by rapid flow variations than the concentration in the effluent from the new secondary sedimentation tanks. During the nitrification period denitrification takes place to some degree in the secondary sedimentation tanks. This may cause loss of solids and it has been observed that the deeper old tanks usually produce an effluent of better quality and seem to be less influenced by denitrification than the new ones.


2009 ◽  
Vol 60 (9) ◽  
pp. 2439-2445 ◽  
Author(s):  
A. Lynggaard-Jensen ◽  
P. Andreasen ◽  
F. Husum ◽  
M. Nygaard ◽  
J. Kaltoft ◽  
...  

Most wastewater treatment plants have several secondary clarifiers or even more sets of clarifiers including several secondary clarifiers, and in practice it is a well known problem that equal distribution of the load to the single clarifier (or set of clarifiers) is very difficult—not to say impossible—to obtain. If the problem is neglected, quite a big percentage of the total clarifier capacity—measured as the max. allowed hydraulic load—can be lost. Further, return sludge rates are seldom controlled by any other means than as a (typically too high) percentage of the inlet to the wastewater treatment plant—giving a varying and too low suspended solids concentration in the return sludge, which again can lead to an unnecessary use of polymer in the pre-dewatering of the surplus sludge taken from the return sludge. A control of the return sludge rate divided into two parts - control of the total return sludge flow and control of how the total flow shall be distributed between the secondary clarifiers - is able to solve the mentioned problems. Finally, as shall be demonstrated on full scale wastewater treatment plants, a considerable increase of the hydraulic capacity of the treatment plants can be obtained.


1997 ◽  
Vol 35 (8) ◽  
pp. 127-135 ◽  
Author(s):  
Youngchul Kim ◽  
Wesley O. Pipes ◽  
Paul-Gene Chung

This is a report of a field study based on data from an activated sludge process in a wastewater treatment plant in Chester, Pennsylvania, USA. The objective was to develop an accurate method for estimation of the average suspended solids concentration (SSB) of the layer of sludge in the settling tanks (the “sludge blanket”). Plant operators estimated SSB by averaging the mixed liquor suspended solids (Sm) and the return sludge suspended solids (Su) concentrations. Measurement of SSB showed that averaging Sm and Su frequently overestimated SSB by a large amount. A different relationship between SSB and parameters which are normally measured for operational purposes was developed. The parameters are Su, the overflow rates and data from the sludge volume index (SVI) measurement. It was found that an increasing overflow rate will result in an exponential decrease in the ratio of SSB to Su. Also, the SVI has a marked effect on the ratio of SSB to Su and thus on the amount of suspended solids which can be stored in the settling tanks. The proposed estimation equation was found to be statistically superior to estimation by averaging the Sm and Su.


1996 ◽  
Vol 33 (2) ◽  
pp. 219-226 ◽  
Author(s):  
Sven-Göran Bergh ◽  
Gustaf Olsson

Often the suspended solids concentration in activated sludge treatment plants may display both large amplitudes and unnaturally fast changes. If the sensor calibration has been found satisfactory, the abnormal appearance has to be explained by the process itself. There may be three principal reasons for such a behaviour: severe hydraulic conditions, poor floc separation properties or very high sludge blanket. During these circumstances it is very informative to qualitatively examine the relationships between the suspended solids concentration variations and important influencing variables, such as the flow rates and the sludge blanket level. This kind of knowledge based diagnosis is superior to dynamic models for such odd behaviour. A simple on-line method to perform the diagnosis is presented. The method has been tested on a massive set of data from a full scale wastewater treatment plant in Sweden and shown unexpected good ability to supply early warnings. It is also shown that small hydraulic disturbances may purposefully be injected into the settler in order to analyse the risk for process failure.


1999 ◽  
Vol 39 (6) ◽  
pp. 89-96
Author(s):  
J. R. Messenger ◽  
J. C. Smith ◽  
M. J. Tetreault ◽  
C. Vitasovic ◽  
S. Zhou ◽  
...  

The use of process and two-dimensional clarifier modelling to investigate the implications of upgrading Melbourne Water's Eastern Treatment Plant to a nitrification/denitrification process is discussed. Results indicate that the existing clarification capacity is sufficient for the increased solids loading arising from operation at a nitrifying sludge age but that the existing diffuser system may need to be replaced in order to achieve the required oxygen transfer rate. The impact of step feeding into unaerated zones to reduce the aeration tank suspended solids concentration and to achieve denitrification is discussed and the installation of baffles to improve the performance of peripheral feed clarifiers is suggested.


2011 ◽  
Vol 64 (9) ◽  
pp. 1898-1905 ◽  
Author(s):  
T. Maruejouls ◽  
P. Lessard ◽  
B. Wipliez ◽  
G. Pelletier ◽  
P. A. Vanrolleghem

Theoretical studies have shown that discharges from retention tanks could have a negative impact on the WWTP's (Wastewater Treatment Plant) effluent. Characterization of such discharges is necessary to better understand these impacts. This study aims at: (1) characterizing water quality during emptying of a tank; and (2) characterizing the temporal variation of settling velocities of the waters released to the WWTP. Two full-scale sampling campaigns (18 rain events) have been realized in Quebec City and laboratory analyses have shown a wide variability of total suspended solids (TSS) and Chemical Oxygen Demand (COD) concentrations in the water released from the tank. Suspended solids seem to settle quickly because they are only found in large amounts during the first 15 min of pumping to the WWTP. These solids are hypothesized to come from the pumping in which solids remained after a previous event. When these solids are evacuated, low TSS containing waters are pumped from the retention tank. A second concentration peak occurs at the end of the emptying period when the tank is cleaned with wash water. Finally, settling velocity studies allowed characterizing combined sewer wastewaters by separating three main fractions of pollutants which correspond to the beginning, middle and end of emptying. In most cases, it is noticed that particle settling velocities increase as the pollutant load increases.


2017 ◽  
Vol 26 (4) ◽  
pp. 457-469
Author(s):  
Ewa Burszta-Adamiak ◽  
Piotr Dragański ◽  
Karolina Urbańska

Among various drainage surfaces which allow rainwater to be utilised locally, roofs are frequently chosen solution. This is because they represent a big share of all sealed surfaces in cities and discharged liquids are considered potentially clean. Scientific reports confirm that pollutants accumulate on roofs and influence the quality of discharged water. Suspended solids are the biggest group of pollutants which occur in runoffs. The selection of rainwater pre-treatment installation and further use of the water depends on the concentration of suspended solids and their particle size. This article describes results of a research concerning suspended solids discharged from roofs made of traditional materials as well as green-roofs located in urban areas. The quantity and size of particles were assessed against rainfall characteristics: rainfall depth, length of antecedent dry weather periods and season. Results of the research show diversity of concentration levels and size of suspended solids within runoffs in reference to roofing materials, rainfall characteristics and season. The highest concentrations of suspended solids in runoff from traditional roofs were observed during rainfall depth less than 5 mm, after ancedent dry weather periods more than  50 h and in winter. These parameters did not have significantly influence on the low concentrations of suspended solids in runoff from green roofs. Suspended solids particles with the size of up to 200 μm constitute the biggest share of all roof runoffs.


1991 ◽  
Vol 24 (2) ◽  
pp. 133-136 ◽  
Author(s):  
D. P. Milne ◽  
J. C. Curran ◽  
J. S. Findlay ◽  
J. M. Crowther ◽  
J. Bennett ◽  
...  

The effect of dissolved nutrients and inorganic suspended solids on E. coli inactivation has been examined in laboratory experiments. The work employed artificial seawater with dissolved glucose and peptone, laboratory processed suspended solids and chemostat steady state E. coli cultures to establish the effect of these parameters on the viability of an E. coli population. Initial E. coli concentration was 5 × 103 100ml−1, the temperatures 5 °C and 20°C, the suspended solids concentration range was 0 - 100mgl−1, glucose concentration l.0mgl −1, peptone concentration 9.0mgl−1, salinity range 27 - 32‰ and the experimental vessels were shielded from light. Previous work has shown that nutrient-free inorganic suspended solids, at low concentrations, markedly increased the survival of E. coli in seawater. The work presented here shows that the presence of dissolved nutrients greatly increased E. coli survival, in the absence of suspended solids. However at suspended solids concentrations of >5 - 12mgl−1survival time was greatly reduced; thereafter increasing suspended solids concentration in the range >12.5 - 100mgl−1, generally resulted in increasing survival times.


1984 ◽  
Vol 16 (12) ◽  
pp. 649-660
Author(s):  
P Balmér ◽  
S Hallquist ◽  
M Hernebring

The Rya wastewater treatment plant in Gothenburg, Sweden serves 640 000 population equivalents. It is an extremely highly loaded activated sludge plant without presetting with a mean cell residence time of about 0.5 days. Ten years experience proves that the plant is capable of removing about 70% of the BOD load. The effluent BOD is mainly caused by non settleable suspended solids due to the partly dispersed growth of the activated sludge. The low mean cell residence time and the high suspended solids concentration in the aeration basin influent gives an activated sludge with low viability and in mass balance studies it was determined that only 12% of the influent COD and about 40% of the BOD was oxidized by the activated sludge. The activated sludge has consistently had a very low sludge volume index and the settling basins could thus be very highly loaded. The surplus activated sludge could be thickened to solids concentrations over 6%. After dewatering the sludge was either lime treated or co-composted with bark. The plant is manned only eight hours five days a week. During unmanned time there are standby personnel. Data is presented on man power, energy and chemical use, and on costs.


Sign in / Sign up

Export Citation Format

Share Document