An Integrated Modelling Study to Upgrade the Sewerage System of a Coastal Town

1992 ◽  
Vol 25 (12) ◽  
pp. 69-75
Author(s):  
E. A. Delo ◽  
R. B. B. Kellagher

Two complementary methods for the design of storage capacity in an upgraded sewerage system in relation to compliance with the Bathing Water Directive are described. A ten year record of hourly rainfall depths was analysed to give the daily maximum depth of rainfall for durations of 1 h, 2h, 4h, 6h, 8h and 12h. The rainfall events that exceeded the five year design storm were removed. The first method comprised selecting the largest of the second worst storms in each of the ten years and using those as design storms to compute the storage volume required for the upgraded sewerage system. The second produced an analysis of the probability of compliance against storage volume in the upgraded sewerage system. This involved consideration of the probability of an overflow event occurring on a sampling day, statistical analysis of the daily maximum depths of rainfall, and the determination of rainfall depths and durations for a range of storage volumes. The probabilistic method was considered to provide a useful aid to decision makers.

1992 ◽  
Vol 25 (12) ◽  
pp. 59-68 ◽  
Author(s):  
P. C. Head ◽  
D. H. Crawshaw ◽  
P. Dempsey ◽  
C. J. Hutchings

One of the major problems in trying to design wastewater treatment schemes to protect bathing water for coastal communities with combined sewerage systems, is to ensure that discharges of storm water do not prejudice compliance with the requirements of the EC Bathing Water Directive. In order to develop an appropriate storm water management strategy for the Fylde coast it was necessary to integrate a number of mathematical models simulating the hydraulic behaviour of the sewerage system and the dispersion of discharges in the receiving waters. From the sewerage system modelling it was apparent that frequent discharges of storm water to the bathing waters could only be avoided by the provision of considerable additional storage in the system. By means of a suitably calibrated simplified sewer model it was possible to investigate the volumes of storm water generated by a 15 year record of local rainfall when different amounts of extra storage and different pumping regimes were employed. The results from these investigations were used to determine the probable concentrations of faecal bacteria in the coastal waters for each of the 15 bathing seasons and determine the percentage of time for which faecal coliform concentrations exceeded the Bathing Water directive standards for the model grid cells representing the identified bathing waters. As a result of the extensive integrated modelling programme for the Fylde coast it has been possible to design a base flow and storm water management system which should maximize the flow passed forward for treatment whilst also ensuring that there is just sufficient storage to ensure protection of the towns from flooding and the compliance of the beaches with the Bathing Water Directive standards.


2020 ◽  
Vol 2020 (9) ◽  
pp. 29-33
Author(s):  
Sergey Bulatov

The paper purpose is the effectiveness estimation in the technological equipment use, taking into account its reliability and productivity for defective transmission units of buses. The problem consists in the determination of time to be spent on repair of bus transmission units taking into account technological equipment reliability. In the paper there is used a probabilistic method for the prediction bus transmission units, and also a method of the dynamics of averages which allow ensuring minimum of costs for units downtime during repair and equipment cost. The need for repair of transmission units (gear box) arises on an average after 650 hours, the average productivity of the bench makes 4.2 bus / hour. The bench fails on the average after 4600 hours of work, the average time of the bench makes 2 hours. In such a way the solution of the problem specified allows analyzing the necessity of time decrease for transmission unit repair to avoid long downtimes of buses in repair areas without negative impact upon high repair quality and safety during the further operation.


2021 ◽  
Author(s):  
Remziye İlayda Tan ◽  
Ertan Arslankaya ◽  
Erdal Kesgin ◽  
Hayrullah Agaccioglu
Keyword(s):  

Author(s):  
Heye Reemt Bogena

Central elements of the TERENO network are “terrestrial observatories” at the catchment scale which were selected in climate sensitive regions of Germany for the regional analyses of climate change impacts. Within these observatories small scale research facilities and test areas are placed in order to accomplish energy, water, carbon and nutrient process studies across the different compartments of the terrestrial environment. Following a hierarchical scaling approach (point-plot-field) these detailed information and the gained knowledge will be transferred to the regional scale using integrated modelling approaches. Furthermore, existing research stations are enhanced and embedded within the observatories. In addition, mobile measurement platforms enable monitoring of dynamic processes at the local scale up to the determination of spatial pattern at the regional scale are applied within TERENO.


2015 ◽  
Vol 8 (2) ◽  
pp. 191-203 ◽  
Author(s):  
J. Vira ◽  
M. Sofiev

Abstract. This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.


2019 ◽  
Vol 9 (1) ◽  
pp. 159-166
Author(s):  
Piotr Jaśkowski ◽  
Agata Czarnigowska

AbstractThe approach used by construction companies to determine bid prices is an element of their strategy used to win jobs in competitive tenders. Such strategies build upon an analysis of the contactor’s potential and capabilities (am I able to deliver? am I eligible to participate in the tender?), and the analysis of the economic environment, including the expected behavior of competitors. The tender strategy sets out both the guidelines and the procedure in deciding whether or not to bid as well as the rules for determining the price. The price, on the one hand, should be high enough to cover expected direct and indirect costs as well as risk-adjusted profit. On the other hand, it needs to be low enough to be considered most attractive (typically: the lowest) among the prices offered by the competitors. The paper focuses on the price definition component of the bidding strategy. It provides a brief overview of the existing methods that support bidding decisions by comparing their demand for input and limitations in practical applications and presents a simulation-based method supporting the determination of the profit ratio. This probabilistic method assumes the existence of a positive correlation between the prices offered by the competitors. Its application is illustrated by means of a numerical example. The outcomes of the simulation prompt the amount of the profit margin that maximizes the expected value of the contractor’s profit.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4041
Author(s):  
Yuanxiang Lu ◽  
Sihan Liu ◽  
Xinru Zhang ◽  
Zeyi Jiang ◽  
Dianyu E

Voids that are formed by gas injection in a packed bed play an important role in metallurgical and chemical furnaces. Herein, two-phase gas–solid flow in a two-dimensional packed bed during blast injection was simulated numerically. The results indicate that the void stability was dynamic, and the void shape and size fluctuated within a certain range. To determine the void morphology quantitatively, a probabilistic method was proposed. By statistically analyzing the white probability of each pixel in binary images at multiple times, the void boundaries that correspond to different probability ranges were obtained. The boundary that was most appropriate with the simulation result was selected and defined as the well-matched void boundary. Based on this method, the morphologies of voids that formed at different gas velocities were simulated and compared. The method can help us to express the morphological characteristics of the dynamically stable voids in a numerical simulation.


2016 ◽  
Author(s):  
Reza Ghazavi ◽  
Ali Moafi Rabori ◽  
Mohsen Ahadnejad Reveshty

Abstract. Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormwater Management Model (SWMM). The accuracy of model simulations was confirmed based on the results of calibration. Design hyetographs in different return periods show that estimated rainfall depth via Sherman method are greater than other method except for 2-year return period. According to Ghahreman and Abkhezr method, decrease of runoff peak was 30, 39, 41 and 42 percent for 5-10-20 and 50-year return periods respectively, while runoff peak for 2-year return period was increased by 20 percent.


2016 ◽  
Vol 41 (5) ◽  
Author(s):  
Funda Demir ◽  
Azmi Seyhun Kıpçak ◽  
Özgül Dere Özdemir ◽  
Mehmet Burçin Pişkin ◽  
Emek Möröydor Derun

AbstractObjective: Tea (Camellia sinensis), has been used for health field in thousands of years. Caffeine is one of the key component in tea and investigation of caffeine is a popular working subject among the researches. The novelty of this study is not only the determination of the caffeine contents of the teas, but also how addition of lemon and carbonate effects the caffeine contents. Another aim of the study is the investigation of the daily caffeine intakes from teas.Methods: Tea infusions were prepared and caffeine contents were extracted by using chloroform and determined by UV-Vis Spectrophotometer. For lemon and carbonate addition experiments, lemon was added before the caffeine analysis and carbonate was added at the beginning.Results: Maximum caffeine contents from highest to lowest were seen in black, earl grey and green in classic teas; fennel, mint and sage in herbal teas; lemon, apple and rosehip in fruit teas. With lemon addition caffeine contents were increased except green tea and with carbonate addition caffeine contents were decreased except black and fennel tea. Daily caffeine intakes are found between 32.10% (green tea with carbonate) - 77.20% (black tea with lemon), 1.85% (sage tea with carbonate) - 4.05% (fennel tea with lemon) and 2.10% (rosehip with carbonate) - 4.00% (lemon tea with lemon) in classic, herbal and fruit teas, respectively.Conclusion: The significance of this study indicates that herbal and fruit teas contain caffeine, which is assumed zero in literature. The caffeine amount of herbal teas (20.79±0.36-30.68±0.63 ppm) were found barely higher than the fruit teas (22.87±0.54-28.54±0.75 ppm) but daily maximum caffeine intakes were found less than 5%. The daily maximum caffeine intakes were found in the teas as 525.36±2.84-20.79±0.36 ppm, where lemon addition increased to 617.90±3.54-22.97±0.58 ppm and carbonate addition decreased to 488.54±2.05-16.84±0.28 ppm.


Sign in / Sign up

Export Citation Format

Share Document