scholarly journals TERENO: German network of terrestrial environmental observatories

Author(s):  
Heye Reemt Bogena

Central elements of the TERENO network are “terrestrial observatories” at the catchment scale which were selected in climate sensitive regions of Germany for the regional analyses of climate change impacts. Within these observatories small scale research facilities and test areas are placed in order to accomplish energy, water, carbon and nutrient process studies across the different compartments of the terrestrial environment. Following a hierarchical scaling approach (point-plot-field) these detailed information and the gained knowledge will be transferred to the regional scale using integrated modelling approaches. Furthermore, existing research stations are enhanced and embedded within the observatories. In addition, mobile measurement platforms enable monitoring of dynamic processes at the local scale up to the determination of spatial pattern at the regional scale are applied within TERENO.

2021 ◽  
Author(s):  
Chandrasekar V Chandra ◽  
Yingzhao Ma

<div> <p>Precipitation variability from drop scale to regional scale is not fully understood, except we know there is variability at all scales.  The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Dallas-Fort Worth (DFW) urban demonstration network consists of a high-resolution, dual-polarized X-band radar network and a National Weather Service S-band radar system for areal coverage as well as a network of in-situ instruments including tipping bucket gauges, and disdrometers in the DFW international airport. Based on the CASA DFW monitoring platform, we have been exploring the rainfall variability across the airport scale of a large airport such as DFW.  We study the variability of precipitation within the airport grounds and the corresponding impact on airport monitoring and regulatory compliance issues. We also extend this variability analysis across the DFW metro which is also considered a large metro region. The particle size distribution and its small-scale variability are analyzed on both heavy and light rainfall events. As for the catchment scale, the spatial heterogeneity of precipitation in the DFW international airport is specially explored. As for the regional scale, the DFW metropolis is used, and its precipitation variability and trends are demonstrated under the DFW urban radar network. Finally, hydrological response to precipitation variability during the rainstorm event in the DFW international airport is discussed. These observations provide an insight into the relation between space time variability of precipitation and practical response activities in an important region such as airport grounds.  </p> </div><div> <p> </p> </div>


2019 ◽  
Vol 11 (24) ◽  
pp. 6978 ◽  
Author(s):  
Mikael Granberg ◽  
Karyn Bosomworth ◽  
Susie Moloney ◽  
Ann-Catrin Kristianssen ◽  
Hartmut Fünfgeld

The idea that climate change adaptation is best leveraged at the local scale is a well-institutionalized script in both research and formal governance. This idea is based on the argument that the local scale is where climate change impacts are “felt” and experienced. However, sustainable and just climate futures require transformations in systems, norms, and cultures that underpin and reinforce our unsustainable practices and development pathways, not just “local” action. Governance interventions are needed to catalyse such shifts, connecting multilevel and multiscale boundaries of knowledge, values, levels and organizational remits. We critically reflect on current adaptation governance processes in Victoria, Australia and the Gothenburg region, Sweden to explore whether regional-scale governance can provide just as important leverage for adaptation as local governance, by identifying and addressing intersecting gaps and challenges in adaptation at local levels. We suggest that regional-scale adaptation offers possibilities for transformative change because they can identify, connect, and amplify small-scale (local) wins and utilize this collective body of knowledge to challenge and advocate for unblocking stagnated, institutionalized policies and practices, and support transformative change.


Author(s):  
Erik de Goede ◽  
Tim Wagner ◽  
Reimer de Graaff ◽  
Ben Sheets

Numerical modelling of ice growth and transport on regional scales such as lakes, estuaries, or coastal seas can provide crucial input for the planning and design of offshore structures in arctic, sub-arctic, or even mid-latitude regions. It is in these regions that the total loading of ice on infrastructure such as platforms, sea defense structures, sub-sea pipelines, or wind turbines may exceed the total loading of waves and currents, and may therefore determine the design. Thus, the interaction of ice with planned structures might be significant, and accurate models of ice dynamics would be invaluable to engineering in these regions. There is, however, a general lack of ice models that can be applied to study these complex integral physical processes at regional scales. Typically, ice modelling focusses on either large oceanic scales using climate models, or on local scales to study small-scale ice-structure interactions. The regional scale model presented in this paper is targeted at bridging this scale gap. This paper describes the implementation of an ice module in Delft3D. Delft3D is a flexible integrated modelling suite, which simulates two- and three-dimensional flow, sediment transport, morphology, waves, spills, water quality, and ecology, and is capable of handling the interactions between these processes. By dynamically coupling an ice module with these existing modules it becomes possible to not only predict the growth, melting, and transport of open-water ice and associated hydrodynamics, but also to study the interaction of ice with, for example, river banks, the seabed, water quality, or spills of fine sediments or oil. This paper presents the major concepts of the new Delft3D ice module, as well as example applications for various lakes in The Netherlands and Fountain Lake, in Minnesota, USA. Finally, a hypothetical case of ice transport modelling is presented.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Luca Schilirò ◽  
José Cepeda ◽  
Graziella Devoli ◽  
Luca Piciullo

In Norway, shallow landslides are generally triggered by intense rainfall and/or snowmelt events. However, the interaction of hydrometeorological processes (e.g., precipitation and snowmelt) acting at different time scales, and the local variations of the terrain conditions (e.g., thickness of the surficial cover) are complex and often unknown. With the aim of better defining the triggering conditions of shallow landslides at a regional scale we used the physically based model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope stability) in an area located in upper Gudbrandsdalen valley in South-Eastern Norway. We performed numerical simulations to reconstruct two scenarios that triggered many landslides in the study area on 10 June 2011 and 22 May 2013. A large part of the work was dedicated to the parameterization of the numerical model. The initial soil-hydraulic conditions and the spatial variation of the surficial cover thickness have been evaluated applying different methods. To fully evaluate the accuracy of the model, ROC (Receiver Operating Characteristic) curves have been obtained comparing the safety factor maps with the source areas in the two periods of analysis. The results of the numerical simulations show the high susceptibility of the study area to the occurrence of shallow landslides and emphasize the importance of a proper model calibration for improving the reliability.


2021 ◽  
Vol 13 (5) ◽  
pp. 853
Author(s):  
Mohsen Soltani ◽  
Julian Koch ◽  
Simon Stisen

This study aims to improve the standard water balance evapotranspiration (WB ET) estimate, which is typically used as benchmark data for catchment-scale ET estimation, by accounting for net intercatchment groundwater flow in the ET calculation. Using the modified WB ET approach, we examine errors and shortcomings associated with the long-term annual mean (2002–2014) spatial patterns of three remote-sensing (RS) MODIS-based ET products from MODIS16, PML_V2, and TSEB algorithms at 1 km spatial resolution over Denmark, as a test case for small-scale, energy-limited regions. Our results indicate that the novel approach of adding groundwater net in water balance ET calculation results in a more trustworthy ET spatial pattern. This is especially relevant for smaller catchments where groundwater net can be a significant component of the catchment water balance. Nevertheless, large discrepancies are observed both amongst RS ET datasets and compared to modified water balance ET spatial pattern at the national scale; however, catchment-scale analysis highlights that difference in RS ET and WB ET decreases with increasing catchment size and that 90%, 87%, and 93% of all catchments have ∆ET < ±150 mm/year for MODIS16, PML_V2, and TSEB, respectively. In addition, Copula approach captures a nonlinear structure of the joint relationship with multiple densities amongst the RS/WB ET products, showing a complex dependence structure (correlation); however, among the three RS ET datasets, MODIS16 ET shows a closer spatial pattern to the modified WB ET, as identified by a principal component analysis also. This study will help improve the water balance approach by the addition of groundwater net in the ET estimation and contribute to better understand the true correlations amongst RS/WB ET products especially over energy-limited environments.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1246
Author(s):  
Tengfei Wang ◽  
Hui Luo ◽  
Xu Jing ◽  
Jiali Yang ◽  
Meijun Huo ◽  
...  

Water-soluble fluorescent carbon dots (CDs) were synthesized by a hydrothermal method using citric acid as the carbon source and ethylenediamine as the nitrogen source. The repeated and scale-up synthetic experiments were carried out to explore the feasibility of macroscopic preparation of CDs. The CDs/Fe3+ composite was prepared by the interaction of the CDs solution and Fe3+ solution. The optical properties, pH dependence and stability behavior of CDs or the CDs/Fe3+ composite were studied by ultraviolet spectroscopy and fluorescence spectroscopy. Following the principles of fluorescence quenching after the addition of Fe3+ and then the fluorescence recovery after the addition of asorbic acid, the fluorescence intensity of the carbon dots was measured at λex = 360 nm, λem = 460 nm. The content of ascorbic acid was calculated by quantitative analysis of the changing fluorescence intensity. The CDs/Fe3+ composite was applied to the determination of different active molecules, and it was found that the composite had specific recognition of ascorbic acid and showed an excellent linear relationship in 5.0–350.0 μmol·L−1. Moreover, the detection limit was 3.11 μmol·L−1. Satisfactory results were achieved when the method was applied to the ascorbic acid determination in jujube fruit. The fluorescent carbon dots composites prepared in this study may have broad application prospects in a rapid, sensitive and trace determination of ascorbic acid content during food processing.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

Abstract Background Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Results Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Conclusions Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Kapitza ◽  
Pham Van Ha ◽  
Tom Kompas ◽  
Nick Golding ◽  
Natasha C. R. Cadenhead ◽  
...  

AbstractClimate change threatens biodiversity directly by influencing biophysical variables that drive species’ geographic distributions and indirectly through socio-economic changes that influence land use patterns, driven by global consumption, production and climate. To date, no detailed analyses have been produced that assess the relative importance of, or interaction between, these direct and indirect climate change impacts on biodiversity at large scales. Here, we apply a new integrated modelling framework to quantify the relative influence of biophysical and socio-economically mediated impacts on avian species in Vietnam and Australia and we find that socio-economically mediated impacts on suitable ranges are largely outweighed by biophysical impacts. However, by translating economic futures and shocks into spatially explicit predictions of biodiversity change, we now have the power to analyse in a consistent way outcomes for nature and people of any change to policy, regulation, trading conditions or consumption trend at any scale from sub-national to global.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 802
Author(s):  
Suye Li ◽  
Hengqian Wu ◽  
Yanna Zhao ◽  
Ruiyan Zhang ◽  
Zhengping Wang ◽  
...  

The quality control of drug products during manufacturing processes is important, particularly the presence of different polymorphic forms in active pharmaceutical ingredients (APIs) during production, which could affect the performance of the formulated products. The objective of this study was to investigate the phase transformation of fexofenadine hydrochloride (FXD) and its influence on the quality and performance of the drug. Water addition was key controlling factor for the polymorphic conversion from Form I to Form II (hydrate) during the wet granulation process of FXD. Water-induced phase transformation of FXD was studied and quantified with XRD and thermal analysis. When FXD was mixed with water, it rapidly converted to Form II, while the conversion is retarded when FXD is formulated with excipients. In addition, the conversion was totally inhibited when the water content was <15% w/w. The relationship between phase transformation and water content was studied at the small scale, and it was also applicable for the scale-up during wet granulation. The effect of phase transition on the FXD tablet performance was investigated by evaluating granule characterization and dissolution behavior. It was shown that, during the transition, the dissolved FXD acted as a binder to improve the properties of granules, such as density and flowability. However, if the water was over added, it can lead to the incomplete release of the FXD during dissolution. In order to balance the quality attributes and the dissolution of granules, the phase transition of FXD and the water amount added should be controlled during wet granulation.


Sign in / Sign up

Export Citation Format

Share Document