Performance Evaluation of Pilot Waste Stabilization Ponds in Subtropical Region

1992 ◽  
Vol 26 (7-8) ◽  
pp. 1717-1728 ◽  
Author(s):  
M. A. Khan ◽  
S. I. Ahmad

This research investigation was aimed at demonstrating the technical feasibility of facultative waste stabilization ponds under the climatic conditions of subtropical region. A pilot plant was designed and constructed at the Karachi University Campus for the treatment of domestic wastewater. An intensive analytical programme was followed for ten months for evaluating performance efficiency of the facultative ponding system. The algal-bacterial symbiotic system performed satisfactorily and provided effluent with total BOD5 ranging between 26-76 mg/L, total COD ranging between 59-197 mg/L, TKN ranging between 5.35-47.82 mg/L, NH3-N ranging between 0.23-28.98 mg/L, and PO4-P between 1.41-6.76 mg/L. The maximum efficiency achieved for the removal of coliform, fecal coliform and fecal streptococci was 99.99%. The study demonstrated that high BOD5 loading of 507 kg/ha d was possible without deteriorating the quality of performance. It was particularly observed that wind velocity had a pronounced effect on the overall efficiency of the system. It was concluded that facultative ponding system is strongly feasible for this part of the world for the treatment of wastewater.

1995 ◽  
Vol 31 (12) ◽  
pp. 91-101 ◽  
Author(s):  
Y. Racault ◽  
C. Boutin ◽  
A. Seguin

In 1992, a survey was conducted on the performance of waste stabilization ponds in France. The data selected come from a sample of 178 ponds, with an average capacity of 600 p.e., throughout France. For each plant, one or several input--output load measurements over a 24-h period are available. The average organic load level received is approximately 25 kg BOD/ha.d, representing 50% of the nominal load. The quality of the treated water is presented based on the type of sewerage system feeding the ponds. The results appear dispersed, however; in 70% of the cases the concentrations in COD and BOD on filtered samples are under 120 mg/l and 40 mg/l, respectively, and the concentration in TSS under 120 mg/l (discharge standards in France for waste stabilization ponds). The reductions in nitrogen and phosphorus nutrients are on average from 60% to 70%. The influence of different parameters (sewerage system type, organic load, season, age of plant, etc.) was studied. The results appear noticeably worse when the ponds receive wastewater from a strictly separate sewerage system.


2016 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Jordan J. Schmidt ◽  
Colin M. Ragush ◽  
Wendy H. Krkosek ◽  
Graham A. Gagnon ◽  
Rob C. Jamieson

A majority of communities in the Canadian territory of Nunavut rely on passive waste stabilization ponds (WSPs) for domestic wastewater treatment. Little research has been conducted on the treatment performance of these systems. Therefore, in response to impending federal wastewater regulations, a research program was conducted in order to characterize contaminant removal, with phosphorus a contaminant of particular concern. The performance of WSPs in the Arctic communities of Kugaaruk, Pond Inlet, Grise Fiord, and Clyde River was evaluated from 2011 to 2014. Removal of total phosphorus was highly variable, ranging from 24% (Pond Inlet, 2014) to 76% (Grise Fiord, 2011). The average removal efficiency was 44%. Effluent total phosphorus concentrations generally exceeded 7 mg P/L, partly due to elevated raw wastewater concentrations. Over the course of the treatment season (defined as June to September, when the WSP is thawed), limited additional total phosphorus removal was observed. A fractionation analysis of WSP sediments showed that organic phosphorus and phosphorus bound to aluminum and iron were the predominant forms, which provided insight into primary treatment mechanisms. Further studies on these mechanisms are needed in order to optimize Arctic WSP treatment.


1995 ◽  
Vol 31 (12) ◽  
pp. 275-284 ◽  
Author(s):  
N. G. H. Dixo ◽  
M. P. Gambrill ◽  
P. F. C. Catunda ◽  
A. C. van Haandel

A series of four pilot-scale, shallow waste stabilization ponds (WSPs), comprising one facultative followed by three maturation ponds with a total design retention time of 20 days, was monitored to observe its ability to remove pathogenic organisms from the effluent of an upflow anaerobic sludge blanket (UASB) digester. The UASB reactor received strong domestic wastewater from the shanty district of a city in north-east Brazil. The raw wastewater had a very high concentration of intestinal nematode eggs of which, on average, 89.6 percent were removed in the UASB reactor. No intestinal nematode eggs were recovered in the effluent of the first maturation pond, making it suitable for restricted irrigation. The removal of eggs in the first pond exceeded predictions made using a recently published model. Faecal coliforms (FC) were reduced by 4.7 log units on average in the pond series -- the final effluent being suitable for unrestricted irrigation. pHs exceeding 10 were attained in the final maturation pond at the sunniest time of day. There was a significant correlation between levels of pH and FC in the ponds, the latter being ≤ 1000 per 100 ml when the former was ≥ 9.1. The removal of FC in the ponds was linear over the range of pH encountered. The findings are consistent with recent work by others suggesting that FC removal in ponds is multi-factorial. The UASB reactor, with a retention time of 7 h, is an efficient primary treatment alternative to an anaerobic pond in a WSP series receiving an extremely strong domestic wastewater. There are potential advantages of using the former in preference to the latter in a series of ponds.


2019 ◽  
Vol 15 (1) ◽  
pp. 11-25
Author(s):  
Adel S. Faskol ◽  
Gabriel Racoviteanu

Abstract This paper investigates the determined the required log reductions for human intestinal helminth eggs by waste stabilization ponds as simulation as assessing of mitigating health risk to satisfy practice WHO, 2006 guidelines for the safe use of wastewater in agriculture (≤ 0.1 helminth egg/L) to protect the health of children under 15 years was the development of MATLAB, a computer program based waste stabilization ponds design based on parameter uncertainty and 10,000-trial Monte Carlo simulations were developed for a series of anaerobic, facultative and maturation ponds based on 95%-ile of effluent (≤ 0.1 helminth egg/L) which the result in a health-based target. Whereas the influent of the helminth eggs (Nematode) was (932.500 eggs/L). While the treatment provided (100 % reduction/removal) for the overall treatment process with total hydraulic retention time in climatic conditions of Libya it took 36.207 days in the anaerobic pond, facultative pond, first maturation pond and one of the subsequent maturation pond.


2007 ◽  
pp. 419-428
Author(s):  
R.M. Al-Sa 'ed ◽  
N. Mahmoud ◽  
A. Abu-Madi ◽  
O.R. Zimmo

This paper evaluates the feasibility of using local rock filter as natural media in waste stabilization ponds, A pilot-scale algae-rock filter ponds (ARPs) system was investigated, in parallel with algae-based ponds (ABPs) over a period of 6 months to evaluate the treatment efficacy of both systems. Each system entailed 4 equal ponds in series and was continuously fed with domestic wastewater from Birzeit University. The removal rates of organic matter, nutrients and faecal coliforms were monitored within each treatment system. The results obtained revealed that ARPs system was more efficient in the removal of organic matter (TSS and COD; 86% and 84%, respectively) and fecal coliforms (4 log10) than ABPs (81%, 81%, 3 log10, respectively). Nitrogen was reduced in the ARPs to an average of24 mg N/1; in contrast the ABPs effluent contained 32 mg N/1. Compared to ABP system, passive aerated ARPs option is an efficient, a low-cost and land-saving alternative with effluent quality suitable for restricted agricultural use in rural areas.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 307-313 ◽  
Author(s):  
M. Juanico ◽  
H. Weinberg ◽  
N. Soto

The Altiplano, located at 15°–20°S, has an altitude of about 4000 m above sea level which determines extreme climatic conditions that may affect the performance of stabilization ponds: strong solar radiation due to a thin atmosphere of rarefied, clean, dry air; low mean temperatures of water and air; strong differences in temperature between day and night; low oxygen pressure. The oxygen pressure at 4000 m altitude is only 60% of that at sea level. However, lower water temperatures increase oxygen solubility in water compensating for the effect of altitude in the actual concentration of dissolved oxygen in water. Lack of oxygen is not a crucial limiting factor for sewage treatment at high altitudes. Anaerobic ponds are effective in the Altiplano, in spite of the low water temperatures (7–9°C). Design criteria for WSP at different altitudes in Bolivia are presented. An important conclusion with social connotations is that the communities of the Altiplano will need to construct waste stabilization ponds which are 3–5 times larger (and more expensive) than those of the “Los Llanos”.


Sign in / Sign up

Export Citation Format

Share Document