Effect of external shipping traffic on the transport of polluted sediments into the inner city canals of Delft (The Netherlands)

1998 ◽  
Vol 37 (6-7) ◽  
pp. 63-70 ◽  
Author(s):  
P. Kelderman ◽  
Dessalegn Bezabih Kassie ◽  
M. Bijlsma ◽  
L. C. Okonkwo ◽  
A. A. T. Doppenberg

The effect of external shipping traffic on the transport of polluted sediments into the inner city canals of Delft was investigated in a field study, measuring flow velocities and suspended solids contents in the water prior to, during and directly after passage of commercial vessels on the main navigation canal bordering the inner city canal system. Turbulent conditions caused strongly increased flow rates, viz. up to 1 m/sec. These flows were dominantly directed inwards, thus causing a net accumulation of pollutant-loaded sediment material inside the Delft inner city canals. Mass budget calculations as well as sludge thickness measurements revealed that of the ca. 520 tons of sludge material imported annually, about 40% can be attributed to external shipping traffic. The above observations were further supported in experiments with sediment traps located at stations within, as well as outside, the influence of the external shipping traffic. Here, also an apparent import of heavy metals (Pb, Zn, Cu), attached to the sludge material, could be observed.

1998 ◽  
Vol 38 (3) ◽  
pp. 127-134
Author(s):  
Jaap H. J. M. van der Graaf ◽  
Arjen F. van Nieuwenhuijzen

As yet, filtration of wastewater treatment effluent has not been practised in the Netherlands. The main objections were the expected high costs. In order to gain practical experience an investigation programme studied the applicability and optimization of effluent filtration. Especially multi-layer filtration with the addition of ironchloride seemed to be very effective. Very low concentrations of suspended solids and phosphorus were achieved, even at high filtration rates (up to 30 m/h). This leads to an impressive reduction of expected costs, down to Dfl. 0.02/m3 (treated water).


1993 ◽  
Vol 20 (1) ◽  
pp. 57-64 ◽  
Author(s):  
R. D. Tyagi ◽  
J. F. Blais ◽  
N. Meunier ◽  
D. Kluepfel

A biological process of heavy metals solubilization and sewage sludge stabilization was studied in a batch reactor of 30-L capacity. The acclimatized leaching microflora was composed of two major groups of thiobacilli: less acidophilic and acidophilic. A batch time of 10 days allows a substantial metal solubilization: cadmium (100%), copper (80%), manganese (80%), nickel (46%), and zinc (100%). The bioleaching process also causes a significative decrease in sludge total suspended solids (25%) and volatile suspended solids (32%), and a considerable reduction (under the detection limit of 10 cfu∙mL−1) of indicator bacteria (total coliforms, fecal coliforms, fecal streptococci). After filtration or centrifugation of the leached sludge, the solubilized metals were precipitated by lime neutralization. The phosphorus and potassium sludge contents were not affected by bioleaching process. These results indicate that the process of sludge digestion and metal leaching can be conducted in parallel in the same reactor. Key words: sewage sludge, heavy metals, bioleaching, stabilization, thiobacilli, elemental sulfur.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 413-418 ◽  
Author(s):  
H. Furumai ◽  
H. Balmer ◽  
M. Boller

Continuous runoff quality monitoring was conducted for one month at urban highway drainage with an area of 8.4 ha. Dynamic change of suspended solids and heavy metal concentrations were investigated during first flush periods, taking the particle size distribution into consideration. Except for Pb, the concentrations of TSS and heavy metals in runoff were within the range of the EMC reported in recent highway runoff research. Particle-bound heavy metals (Zn, Pb, and Cu) accounted for more significant pollutant loads than soluble fractions. Their content decreased with increasing total SS concentration in runoff samples. The results of particle size distribution (PSD) analysis of runoff samples indicate that high TSS concentration samples contained coarser particles. Based on the PSD results, a stepwise wash-off phenomenon of TSS under varying runoff rate conditions was explained by the different washoff behavior of fine (< 20 mm) and coarser particles.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 556 ◽  
Author(s):  
Faouzi Ben Rebah ◽  
Wissem Mnif ◽  
Saifeldin M. Siddeeg

Microorganisms such as bacteria, fungi, and microalgae have been used to produce bioflocculants with various structures. These polymers are active substances that are biodegradable, environmentally harmless, and have flocculation characteristics. Most of the developed microbial bioflocculants displayed significant flocculating activity (FA > 70–90%) depending on the strain used and on the operating parameters. These biopolymers have been investigated and successfully used for wastewater depollution in the laboratory. In various cases, selected efficient microbial flocculants could reduce significantly suspended solids (SS), turbidity, chemical oxygen demand (COD), total nitrogen (Nt), dye, and heavy metals, with removal percentages exceeding 90% depending on the bioflocculating materials and on the wastewater characteristics. Moreover, bioflocculants showed acceptable results for sludge conditioning (accepted levels of dry solids, specific resistance to filtration, moisture, etc.) compared to chemicals. This paper explores various bioflocculants produced by numerous microbial strains. Their production procedures and flocculating performance will be included. Furthermore, their efficiency in the depollution of wastewater will be discussed.


2004 ◽  
Vol 49 (3) ◽  
pp. 183-188 ◽  
Author(s):  
R. Berbee ◽  
P. Vermij ◽  
W.J. van de Laak

Road traffic is a diffuse source of heavy metals and oil that leads to pollution of verges and surface water in areas immediately surrounding roads. The Commission for Integrated Water Management (CIW) has drawn up a policy document addressing methods for managing this type of pollution. The document is based on results from numerous studies in The Netherlands targeting pollution caused by traffic. The Commission concludes that measures at the source are the only way to realise sustainable solutions. For example, attention should be devoted to the issue of zinc emissions from car tyres and crash barriers. The concept of controlled infiltration is recommended for combating pollution caused by spray and runoff from roads. This includes periodic chemical inspection of verge pollution and, where necessary, replacement of the verge's top layer. The application of porous asphalt on highways in The Netherlands has also proven highly effective in limiting pollution caused by traffic, with far less pollution caused by spray from the highway and runoff as compared to traditional asphalt.


Author(s):  
Min Zhang ◽  
Xiangchun Wang ◽  
Long Yang ◽  
Yangyang Chu

Heavy metals contaminated sediment has become a worldwide environmental issue due to its great harm to human and aquatic organisms. Thus, economical, effective, and environmentally-friendly remediation technologies are urgently needed. Among which, combined remediation technologies have attracted widespread attention for their unique advantages. This paper introduces combined remediation technologies based on physical-, chemical-, and bio-remediation of heavy metal polluted sediments. Firstly, the research progress in physical-chemical, bio-chemical, and inter-organismal (including plants, animals, microorganisms) remediation of heavy metal polluted sediments are summarized. Additionally, the paper analyzes the problems of the process of combined remediation of heavy metals in river sediments and outlooks the future development trends of remediation technologies. Overall, this review provides useful technology references for the control and treatment of heavy metal pollution in river sediments.


2016 ◽  
Vol 30 (12) ◽  
pp. 4171-4184 ◽  
Author(s):  
Yovana Todorova ◽  
Stilyana Lincheva ◽  
Ivaylo Yotinov ◽  
Yana Topalova

Sign in / Sign up

Export Citation Format

Share Document