Emissions of porewater compounds and gases from the subaquatic sediment disposal site “rodewischhafen”, hamburg harbour

1998 ◽  
Vol 37 (6-7) ◽  
pp. 87-93 ◽  
Author(s):  
M. Kussmaul ◽  
A. Groengroeft ◽  
H. Koethe

In the year 1993 a confined and unused harbour basin was used to store 290,000 m3 of fine-grained dredged material from Hamburg harbour. About 70% of the deposit surface was water covered. The edge areas were above the water table and covered with reed. Emissions of dissolved compounds into the groundwater, as well as surface gas emissions were measured from 1994 to 1996. As indicators for water fluxes from the deposit we used NH4+ and HCO3− because of their high concentrations in mud porewater in comparison to groundwater. The average concentrations of NH4+ and HCO3− in the porewater increased during 2 years from 85 to 250 mg NH4+ 1−1 and from 2.0 to 3.1 g HCO3− 1−1, while the groundwater samples showed constant values of 8 mg NH4+ 1−1 and 0.7 g HCO3− 1−1. Furthermore, the average gas emissions over the water surface were 3.2 g CH4 m−2 d−1 and 0.8 g CO2 m−2 d−1. In contrast, no methane and 3.0 g CO2 m−2 d−1 were emitted from land areas. The results indicated, that there were no significant emissions of mud porewater compounds into the groundwater but high CH4-emissions over the water covered surface of the mud deposit.

Author(s):  
A. J. Cooper

AbstractThick and predictable deposits of fine grained Quaternary materials have been used for the siting of waste management facilities in Ontario. The search for such sites is founded on the application of techniques in Quaternary geology and hydrogeology. Two examples are presented. Oxford County is located southwest of Toronto in an area of parallel morainic ridges separated by flat till plains. Conventional wisdom would focus on the till plains for thick, consistent fine grained Quaternary Sediments. However, the careful analysis of the Quaternary stratigraphy and glacial history revealed that better sites are located along the moraines. A site on the Ingersoll Moraine was studied in detail and defended at a public hearing. Concerns about the geology of the materials were allayed by the confirmation of homogeneous clayey silt materials exposed when the site opened in late 1986. A much wider ranging search was undertaken for a major hazardous and liquid industrial waste treatment and disposal facility for the Province of Ontario. Progressively more detailed investigations of the Quaternary geology were used to assist a multi-disciplinary site selection team. Initial interpretations covered an area of 75 000 km2 at a scale of 1:250 000. Eight candidate sites were then selected for further investigation with five continuously sampled stratigraphic boreholes. The chosen site is located in a depression in the bedrock filled with 40 m of glaciolacustrine clayey silt. Site specific hydrogeological and geotechnical studies were integrated with a detailed geological investigation.


1979 ◽  
Vol 16 (6) ◽  
pp. 1196-1209 ◽  
Author(s):  
D. H. Loring

Total Co (3–22 ppm), Ni (4–160 ppm), V (4–168 ppm), and Cr (8–241 ppm) concentrations vary regionally and with textural differences in the sediments of the St. Lawrence estuary and Gulf of St. Lawrence. They are, except for local anomalies, at or near natural levels relative to their source rocks and other marine sediments.Chemical partition and mineralogical analyses indicate that small but biochemically significant quantities (2–24%) of the total element concentrations are potentially available to the biota and are most likely held by fine-grained organic material, hydrous iron oxides, and ion exchange positions in the sediments. In the upper estuary, nondetrital Ni, Cr, and V supplied from natural and anthropogenic (Cr) sources are apparently preferentially scavenged from solution by terrestrial organic matter and hydrous oxides and concentrated in fine-grained sediments deposited below the turbidity maximum. In the lower estuary, the fine-grained sediments are relatively enriched in nondetrital V supplied from anthropogenic sources in the Saguenay system. Elsewhere the sedimentation intensities of the nondetrital elemental contributions have remained relatively constant with fluctuations in total sediment intensity.Seventy-six to 98% of the total Co, Ni, Cr, and V is not, however, available to the biota, but held in various sulphide, oxide, and silicate minerals. The host minerals have accumulated at the same rate as other fine-grained detrital material except for some local anomalies. In the upper estuary, detrital V concentrations are highest in the sands as an apparent result of an enrichment of ilmenite and titaniferous magnetite from a nearby mineral deposit. In the open gulf, relatively high concentrations of Ni, Cr, and V occur in sediments from the Bay of Islands, Newfoundland, and probably result from the seaward dispersal of detrital Ni, Cr, and V bearing minerals from nearby ultrabasic rocks.


2015 ◽  
Vol 17 (1) ◽  
pp. 162-174 ◽  

<div> <p>This paper presents an assessment of the impact of uncontrolled and unscientific disposal of MSW on ground water in Dhanbad city, India. In this study, ground water quality around municipal solid waste disposal sites was investigated. Ground water quality analysis was carried out on samples collected at various distances from two disposal sites. The study has revealed that the ground water quality near dumping sites does not conform to the drinking water quality standards as per IS:10500. The impacts of indiscriminate dumping activity on ground water appeared most clearly as high concentrations of total dissolved solids, electrical conductivity, chlorides, chemical oxygen demand, and sulphates. High amount of metals like Na, K, Ca, Mg, Cd, Cu, Ni, Fe, Zn and Mn has also been detected in the groundwater samples near dumping area. Leachate characterization study also reveals high potential for groundwater contamination. Presence of feacal coliform contamination in groundwater samples indicates potential health risk for individuals exposed to this water.&nbsp;</p> </div> <p>&nbsp;</p>


2021 ◽  
Author(s):  
Ming Xie ◽  
Yunpeng Jia ◽  
Ying Li ◽  
Xiaohua Cai ◽  
Kai Cao

Abstract Laser-induced fluorescence (LIF) is an effective, all-weather oil spill identification method that has been widely applied for oil spill monitoring. However, the distinguishability on oil types is seldom considered while selecting excitation wavelength. This study is intended to find the optimal excitation wavelength for fine-grained classification of refined oil pollutants using LIF by comparing the distinguishability of fluorometric spectra under various excitation wavelengths on some typical types of refined-oil samples. The results show that the fluorometric spectra of oil samples significantly vary under different excitation wavelengths, and the four types of oil applied in this study are most likely to be distinguished under the excitation wavelengths of 395 nm and 420 nm. This study is expected to improve the ability of oil types identification using LIF method without increasing time or other cost, and also provides theoretical basis for the development of portable LIF devices for oil spill identification.


2021 ◽  
Author(s):  
juyeon Lee ◽  
minjune Yang

&lt;p&gt;This study conducted a rhizofiltration experiment for uranium-removal with the edible plants (&lt;em&gt;Lactuca sativa, Brassica campestris &lt;/em&gt;L., &lt;em&gt;Raphanus sativus &lt;/em&gt;L., and &lt;em&gt;Oenanthe javanica&lt;/em&gt;) which generally consumed in South Korea. Various batch experiments were performed with different initial uranium concentrations, pH conditions, and genuine groundwater. The results showed the uranium accumulation and bioconcentration factor (BCF) of plant roots increase with an increase in initial uranium concentrations in the solution. Of the four plants, the amount of uranium accumulated in &lt;em&gt;Raphanus sativus &lt;/em&gt;L. roots was 1215.8 &amp;#956;g/g DW with the maximum BCF value of 2692.7. The BCF value based on various pH conditions (pHs 3, 5, 7 and 9) of artificial solutions was highest at pH 3 for all four plants, and the BCF value of &lt;em&gt;Brassica campestris &lt;/em&gt;L. was the maximum of 11580.3 at pH 3. As a result of rhizofiltration experiments with genuine groundwater contaminated with uranium, the BCF values of &lt;em&gt;Raphanus sativus &lt;/em&gt;L. were 1684.7 and 1700.1, the highest among the four species, in Oesam-dong and Bugokdong groundwater samples with uranium concentration of 83 and 173 &amp;#956;g/L. From SEM/EDS analysis, it was confirmed that uranium in contaminated groundwater was adsorbed as a solid phase on the root surface. These results demonstrate that &lt;em&gt;Raphanus sativus &lt;/em&gt;L. not only has a high tolerance to high concentrations of uranium and low pH conditions but also has a remarkable potential for uranium accumulation capacity.&lt;/p&gt;


2017 ◽  
pp. 366-374 ◽  
Author(s):  
Chih-Feng Chen ◽  
Yun-Ru Ju ◽  
Chiu-Wen Chen ◽  
Yi-Kuo Chang ◽  
Cheng-Di Dong

Geologos ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 137-147
Author(s):  
Tomasz Kotowski ◽  
Stefan Satora

AbstractWe present the results of isotope measurements (δ18O, δ D, δ13CDICand14C) and chemical analyses (TDS, TOC, HCO3-, SO42-, Cl-, NO3-, NH4+, Ca2+, Mg2+Na+and K+) conducted on groundwater samples collected from deep Cenozoic aquifers. These aquifers are the basic source of drinking water at numerous localities within the study area in northern Poland. Most of the δ18O determinations are characterised by low variability (i.e., > 70 per cent of δ18O are between -9.5‰ and -9.2‰). In most cases tritium activity was not detected or its content slightly exceeded the uncertainty of measurement (from ±0.3 T.U. to ± 0.5 T.U.). On average, 14C activity is twice higher than that under similar conditions and in hydrogeological systems. The δ13CDICvalues fall within the -13.6‰ to -12.8‰ range. A slight variability is observed when considering all isotope and chemical data within the study area and under these hydrogeological conditions. In general, the results of isotope and chemical analyses seem to be homogeneous, indicating the presence of closely similar groundwaters in the system, irrespective of geological formation. It is likely that there is a significant hydraulic connection between shallow and deep aquifers in the Gwda catchment, which indicates the potential for seepage of pollutants from shallow Pleistocene to deep Miocene aquifers. This can endanger the latter by e.g., high concentrations of NO3-, SO42-and Cl-ions from shallow aquifers within the Gwda catchment.


2009 ◽  
Vol 59 (5) ◽  
pp. 1043-1051 ◽  
Author(s):  
X. W. Wang ◽  
N. N. Zhong ◽  
D. M. Hu ◽  
Z. Z. Liu ◽  
Z. H. Zhang

The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the leachate from the gangue and 20 groundwater samples, which were collected from the 12th Coal Mine around gangue piles in Henan Province, China, were determined by SPE-GC-MS. The characteristics of PAHs pollutants in groundwater were investigated, and compared with the concentrations of PAHs in the leachate from different weathered gangues to discuss the pollution effects of PAHs from coal gangue on groundwater. The results showed that total concentrations of the 16 EPA preferentially controlled PAHs ranged from 146.9 ng/L to 1220.6 ng/L.The components of PAHs such as chrysene, benzo[a]anthracene, benzo[b + k]fluoranthene, indeno[1,2,3-c,d]–pyrene, and dibenz[a,h]anthracene were fairly high. The 2–4 rings PAHs such as naphthalene, phenanthrene, fluorene and chrysene were dominant in groundwater, which was similar to those of the leachate from the different weathered gangues. Therefore, it should be paid much more attention on the transport of lower ring numbered PAHs leached by rains from the coal mines after landfilling and dumping. Based on the spatial distribution of PAHs and the high concentrations of PAHs with 2–4 rings in groundwater and leaching samples, there might be other pollution sources of PAHs except for penetration from coal gangue into groundwater in the Pingdingshan coal mine area.


1984 ◽  
Vol 44 ◽  
Author(s):  
D. R. Mackenzie ◽  
R. E. Barletta ◽  
J. F. Smalley ◽  
C. R. Kempf ◽  
R. E. Davis

AbstractThe Sheffield low-level radioactive waste disposal site, which ceased operation in 1978, has been the focus of modeling efforts by the NRC for the purpose of predicting long-term site behavior. To provide the NRC with information required for its modeling effort, a study to define the source term for tritium in eight trenches at the Sheffield site has been undertaken. Tritium is of special interest since significant concentrations of the isotope have been found in groundwater samples taken at the site and at locations outside the original site boundary. Previous estimates of tritium site inventory at Sheffield are in wide disagreement. In this study, the tritium inventory in the eight trenches was estimated by reviewing the radioactive shipping records (RSRs) for waste buried in these trenches. It has been found that the tritium shipped for burial at the site was probably higher than previously estimated. In the eight trenches surveyed, which amount to roughly one half the total volume and activity buried at Sheffield, approximately 2350 Ci of tritium from non-fuel cycle sources were identified.


Sign in / Sign up

Export Citation Format

Share Document