Dynamic simulation of a low loaded trickling filter for nitrification

1999 ◽  
Vol 39 (4) ◽  
pp. 163-168 ◽  
Author(s):  
K. Seggelke ◽  
F. Obenaus ◽  
K.-H. Rosenwinkel

For this report, an existing biofilm model was examined in regard to its suitability for the simulation of full scale trickling filter for nitrification. The system was calibrated using the results ascertained in a measuring campaign under dry weather conditions. The verification was done using the results of a second examination period which included spells of stormwater input. It was possible for all periods to satisfactorily illustrate the degradation performance of the simulated trickling filters in regard to dynamics and quantity.

2000 ◽  
Vol 41 (1) ◽  
pp. 163-166 ◽  
Author(s):  
W. Gebert ◽  
P.A. Wilderer

The investigated effects of heating the filling material in trickling filters were carried out at the Ingolstadt wastewater treatment plant, Germany. Two pilot scale trickling filters were set up. Heat exchanger pipings were embedded in the filter media of one of these trickling filters, and the temperature in the trickling filter was raised. The other trickling filter was operated under normal temperature conditions, and was used as a control. The results clearly demonstrate that the performance of trickling filters cannot be constantly improved by heating the biofilm support media. A sustained increase of the metabolic rates did not occur. The decrease of the solubility of oxgen in water and mass transfer limitations caused by an increase of the biofilm thickness are the main reasons for that. Thus, the heating of trickling filters (e.g. by waste heat utilization) in order to increase the capacity of trickling filters under cold weather conditions cannot be recommended.


1997 ◽  
Vol 36 (1) ◽  
pp. 255-262 ◽  
Author(s):  
Denny S. Parker ◽  
Tom Jacobs ◽  
Erich Bower ◽  
Dennis W. Stowe ◽  
Greg Farmer

Tertiary nitrifying trickling filters (NTFs) at the Littleton/Englewood wastewater treatment plant provide for nitrification to meet seasonally varying effluent requirements for ammonia nitrogen. Operation of the full-scale facilities during the past two years demonstrates highly efficient oxidation of ammonia and the effectiveness of biofilm control strategies. A decline in nitrification performance caused by predators was successfully corrected by the use of a special alkaline backwash feature which controlled the level of larval development within the NTFs.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 477-485 ◽  
Author(s):  
T. Wilk

The long term effects of the conditions for a biofilm reactor are governed by slow microbial processes, such as the growth and decay of the bacteria. Simulations of a trickling filter model based on a multi species dynamic biofilm model and data from an experiment, where an NTF had been alternatingly fed unnitrified and completely nitrified wastewater, agree fairly well. Two different operating strategies of NTFs are studied by simulation: periodically inversing the order of two NTFs in series and varying the flow through NTFs operating in parallel. The simulations indicate that both strategies have a potential of increasing the nitrifying capacity of filters operating at low ammonium load, provided the influent concentrations of organic matter are low. However, to what extent the capacity is increased depends on the specific death rate of the nitrifiers, which needs to be further studied.


1996 ◽  
Vol 33 (1) ◽  
pp. 89-99 ◽  
Author(s):  
F. Göhle ◽  
A. Finnson ◽  
B. Hultman

Bromma sewage treatment plant in Stockholm is the second largest plant in Stockholm and will in the near future have requirements for nitrogen removal. This means that a higher sludge age must be used in the aeration basin. This may be accomplished by an increase of the sludge concentration up to values until the limiting solids flux is exceeded. Measurement of the sludge blanket level is a possibility for better control of the sedimentation basin. Different measurements were performed to evaluate the main factors influencing the level. Dynamic simulation studies were performed at Bromma sewage treatment plant in Stockholm of the sludge blanket level and the return sludge concentration in a full-scale sedimentation basin. The simulations were performed with the help of a Danish simulation package, EFOR (1992), in which both reactions in the aeration basin (mainly based on the IAWPRC model) and separation processes in the sedimentation basin (both clarification and thickening) can be studied. The thickening model is based on the solids flux theory and the Vesilind formula (1979). Different methods were compared for determination and use of characteristic parameters in the Vesilind formula.


1995 ◽  
Vol 31 (12) ◽  
pp. 21-31 ◽  
Author(s):  
P. G. J. Meiring ◽  
R. A. Oellermann

A system of oxidation ponds in series with a biological trickling filter is described. It was known that this arrangement was incapable of reducing effectively the levels of algae present in the pond liquid even though nitrification was effected because of autotrophic conditions prevailing in the trickling filters. This very low trophic level explained the lack of adsorptive capacity present. By shortcircuiting less than 10 percent of the effluent from a fully loaded primary facultative oxidation pond to the trickling filter, the autotrophuc nature or the film in the trickling filter was sufficiently shifted towards a heterotrophic state that had sufficient adsorptive capacity to retain the majority of the algae. It is concluded that the algae, although being absorbed, stay alive on the film and do not contribute significantly to the carbonaceous load on the trickling filter. Further more the algae, although secluded from all sunlight, actually partake in the purification process, producing an effluent which, unlike a normal humus tank effluent, is surprisingly sparkling clear. This significant observation appears to be in line with laboratory findings by others who, when they artificially immobilised certain species of algae and passed water over them, concluded that the algae retained the potential to remove certain compounds from the water. Conglomerates of biologically flocculated dark-green algae are scoured off the film (or sloughed off as part of the film) and, having been photosynthetically inactive for some days, tend not to float, but settle very rapidly. A very significantly aspect of this development is the great potential it has for practical application in developing countries. The algae sloughed off the media are easily thickened and available for ultimate recovery from the water phase without the addition of chemicals.


2004 ◽  
Vol 41 (01) ◽  
pp. 7-16
Author(s):  
C. Guedes Soares ◽  
R. A. Francisco ◽  
L. Moreira ◽  
M. Laranjinha

Full-scale maneuvering trials of two fast patrol vessels are presented. These trials were aimed at identifying the maneuvering characteristics of the fast patrol vessels of the Argos class. The set of maneuvers chosen were a result of a study based on simulated data, which determined the set of maneuvers that would be most efficient to identifying the parameters of the ship planar equations of motion. These included circles, at different approach speeds and rudder angles, spiral, zigzag, and stopping maneuvers. All maneuvers were performed in good weather conditions. This paper describes and analyzes the results of the full-scale trials of this class of ships.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 872 ◽  
Author(s):  
Anna Dzionek ◽  
Danuta Wojcieszyńska ◽  
Małgorzata Adamczyk-Habrajska ◽  
Urszula Guzik

The naproxen-degrading bacterium Bacillus thuringiensis B1(2015b) was immobilised onto loofah sponge and introduced into lab-scale trickling filters. The trickling filters constructed for this study additionally contained stabilised microflora from a functioning wastewater treatment plant to assess the behavior of introduced immobilized biocatalyst in a fully functioning bioremediation system. The immobilised cells degraded naproxen (1 mg/L) faster in the presence of autochthonous microflora than in a monoculture trickling filter. There was also abundant colonization of the loofah sponges by the microorganisms from the system. Analysis of the influence of an acute, short-term naproxen exposure on the indigenous community revealed a significant drop in its diversity and qualitative composition. Bioaugmentation was also not neutral to the microflora. Introducing a new microorganism and increasing the removal of the pollutant caused changes in the microbial community structure and species composition. The incorporation of the immobilised B1(2015b) was successful and the introduced strain colonized the basic carrier in the trickling filter after the complete biodegradation of the naproxen. As a result, the bioremediation system could potentially be used to biodegrade naproxen in the future.


Author(s):  
Mirna Alameddine ◽  
Abdul Rahim Al Umairi ◽  
Mohammed Zakee Shaikh ◽  
Mohamed Gamal El-Din

The enhanced primary treatment of municipal primary influent under wet weather conditions was studied through a comprehensive approach from bench to full scale. The study delivered a practical solution for managing seasonal fluctuations in the influent wastewater by determining the most effective operation conditions for coagulation/flocculation. Three metal-based coagulants were tested through a series of jar tests. Alum outperformed other coagulants since 1 mg of Al added as alum with low mixing was able to remove 22 NTUs, 19 mg COD and 0.8 mg ortho-P. Three-factor ANOVA indicated that TSS removal depended mostly on rapid mixing while COD and ortho-P removals depended on slow mixing and coagulant dose. In bench and full-scale operations, the addition of polymer did not lead to any pronounced improvements. Finally, turbidity and percent ultraviolet transmittance showed good correlation with TSS and ortho-P which evokes their use as surrogates for micropollutants removal and online process control.


Sign in / Sign up

Export Citation Format

Share Document