Thermophilic sulfate and sulfite reduction with methanol in a high rate anaerobic reactor

2000 ◽  
Vol 42 (5-6) ◽  
pp. 251-258 ◽  
Author(s):  
J. Weijma ◽  
J.-P. Haerkens ◽  
A.J.M. Stams ◽  
L.W. Hulshoff Pol ◽  
G. Lettinga

Thermophilic sulfite and sulfate reduction offers good prospects as part of an alternative technology to conventional off-gas desulfurization technologies. Thermophilic sulfate and sulfite reduction with methanol as the sole carbon and energy source for the sulfate reducing bacteria was studied in lab-scale Expanded Granular Sludge Bed (EGSB) reactors operated at 65 °C and pH 7.5. At a hydraulic retention time (HRT) of 4 hr, sulfite and sulfate elimination rates of up to 0.22 mol-S.l-1.day-1 (100% elimination) and 0.15 mol-S.l-1.day-1 (80% elimination), respectively, were achieved. Sulfite and sulfate reduction accounted for 85–90% of the electrons released during degradation of methanol. In addition, 10–13% and 1–2% of the consumed methanol was converted to acetate and methane, respectively. Acetate was not utilized as electron donor for sulfate reduction. Acetate production seemed to be linearly correlated to the amount of sulfite and sulfate reduced. Sulfite disproportionating activity of the sludge was demonstrated by the simultaneous appearance of sulfide and sulfate in batch tests with sulfite. However, sulfite disproportionation rates were 4 times lower than sulfate reduction rates with methanol. The results clearly demonstrate that methanol can be efficiently used as electron and carbon source to obtain high sulfite and sulfate elimination rates in thermophilic bioreactors.

1998 ◽  
Vol 37 (4-5) ◽  
pp. 599-603 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori ◽  
Edja. Kofi. Bosque-Hamilton

The interactions between filamentous sulfur bacteria (FSB), sulfate reducing bacteria (SRB) and poly-P accumulating bacteria (PAB) in the activated sludge of a municipal plant operated under anaerobic-oxic conditions were examined in batch experiments using return sludge (RAS) and settled sewage. Phosphate release and sulfate reduction occurred simultaneously under anaerobic conditions. SRB were more sensitive to temperature changes than PAB. SRB played an important role in the decomposition of propionate to acetate. When the sulfate reduction rates were high, there was a tendency for the maximum release of phosphate also to be high. This was explained by the fact that PAB utilized the acetate produced by SRB. Sulfur oxidizing bacteria were sensitive to temperature change. When the sulfate reduction rate was high, the sulfide oxidizing rate was also high and filamentous bulking occurred. The results showed that sulfate reduction was a cause of filamentous bulking due to Type 021N that could utilize reduced sulfur.


1998 ◽  
Vol 64 (5) ◽  
pp. 1700-1707 ◽  
Author(s):  
Flemming Vester ◽  
Kjeld Ingvorsen

ABSTRACT A greatly improved most-probable-number (MPN) method for selective enumeration of sulfate-reducing bacteria (SRB) is described. The method is based on the use of natural media and radiolabeled sulfate (35SO4 2−). The natural media used consisted of anaerobically prepared sterilized sludge or sediment slurries obtained from sampling sites. The densities of SRB in sediment samples from Kysing Fjord (Denmark) and activated sludge were determined by using a normal MPN (N-MPN) method with synthetic cultivation media and a tracer MPN (T-MPN) method with natural media. The T-MPN method with natural media always yielded significantly higher (100- to 1,000-fold-higher) MPN values than the N-MPN method with synthetic media. The recovery of SRB from environmental samples was investigated by simultaneously measuring sulfate reduction rates (by a35S-radiotracer method) and bacterial counts by using the T-MPN and N-MPN methods, respectively. When bacterial numbers estimated by the T-MPN method with natural media were used, specific sulfate reduction rates (qSO4 2−) of 10−14to 10−13 mol of SO4 2−cell−1 day−1 were calculated, which is within the range of qSO4 2− values previously reported for pure cultures of SRB (10−15 to 10−14 mol of SO4 2− cell−1day−1). qSO4 2− values calculated from N-MPN values obtained with synthetic media were several orders of magnitude higher (2 � 10−10 to 7 � 10−10 mol of SO4 2−cell−1 day−1), showing that viable counts of SRB were seriously underestimated when standard enumeration media were used. Our results demonstrate that the use of natural media results in significant improvements in estimates of the true numbers of SRB in environmental samples.


2009 ◽  
Vol 71-73 ◽  
pp. 553-556
Author(s):  
Laura M. Nevatalo ◽  
Hannele Auvinen ◽  
Martijn F.M. Bijmans ◽  
Anna H. Kaksonen ◽  
Piet N.L. Lens ◽  
...  

The amenability of sulfate reduction at low temperature for the treatment of acid mine drainage in arctic areas was investigated with three reactor experiments. The aim of these studies was to assess the potential and determine rates of sulfate reduction at 9oC with formic acid and hydrogen as electron donors. Three different bench-scale reactor configurations were tested: fluidized-bed reactor, membrane bioreactor and gas-lift bioreactor. The reactors were inoculated with a low temperature enrichment culture of sulfate-reducing bacteria. The temperature range of sulfate reduction was studied with a temperature gradient assay. The microbial community structure of the reactors was analyzed using polymerase chain reaction - denaturating gel gradient electrophoresis (PCR-DGGE) with universal 16S rRNA gene primers and SRB specific dsrB primers. The stable sulfate reduction rates at 9oC in all the reactors ranged from 0.6 to 1.4 g SO42- L-1 d-1. The temperature gradient assay supported also by the PCR-DGGE sequence profiling indicated that the low temperature enrichment was dominated by a psychrotolerant mesophilic Desulfomicrobium sp. having their maximal sulfide production rate at 31oC.


1998 ◽  
Vol 64 (8) ◽  
pp. 2943-2951 ◽  
Author(s):  
Andreas Teske ◽  
Niels B. Ramsing ◽  
Kirsten Habicht ◽  
Manabu Fukui ◽  
Jan Küver ◽  
...  

ABSTRACT The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 106 and 107 cultivable sulfate-reducing bacteria ml−1 and showed sulfate reduction rates between 1,000 and 2,200 nmol ml−1 day−1, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 104 to 106cells ml−1. A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO2 from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO2 demand of the mat.


1997 ◽  
Vol 35 (5) ◽  
pp. 293-299 ◽  
Author(s):  
Wendy R. Tyrrell ◽  
David R. Mulligan ◽  
Lindsay I. Sly ◽  
L. Clive Bell

The large number of wetlands treating mining wastewaters around the world have mostly been constructed in temperate environments. Wetlands have yet to be proven in low rainfall, high evaporation environments and such conditions are common in many parts of Australia. BHP Australia Coal is researching whether wetlands have potential in central Queensland to treat coal mining wastewaters. In this region, mean annual rainfall is < 650 mm and evaporation > 2 000 mm. A pilot-scale wetland system has been constructed at an open-cut coal mine. The system comprises six treatment cells, each 125 m long and 10 m wide. The system is described in the paper and some initial results presented. Results over the first fourteen months of operation have shown that although pH has not increased enough to enable reuse or release of the water, sulfate reduction has been observed in parts of the system, as shown by the characteristic black precipitate and smell of hydrogen sulfide emanating from the wetlands. These encouraging signs have led to experiments aimed at identifying the factors limiting sulfate reduction. The first experiment, described herein, included four treatments where straw was overlain by soil and the water level varied, being either at the top of the straw, at the top of the soil, or about 5 cm above the soil. The effect of inoculating with sulfate-reducing bacteria was investigated. Two controls were included, one covered and one open, to enable the effect of evaporation to be determined. The final treatment consisted of combined straw/cattle manure overlain with soil. Results showed that sulfate reduction did occur, as demonstrated by pH increases and lowering of sulfate levels. Mean pH of the water was significantly higher after 19 days; in the controls, pH was < 3.3, whereas in the treatments, pH ranged from 5.4 to 6.7. The best improvement in sulfate levels occurred in the straw/cattle manure treatment.


1999 ◽  
Vol 39 (7) ◽  
pp. 41-47 ◽  
Author(s):  
Satoshi Okabe ◽  
Hisashi Satoh ◽  
Tsukasa Itoh ◽  
Yoshimasa Watanabe

The vertical distribution of sulfate-reducing bacteria (SRB) in microaerophilic wastewater biofilms grown on fully submerged rotating disk reactors (RDR) was determined by the conventional culture-dependent MPN method and in situ hybridization of fluorescently-labelled 16S rRNA-targeted oligonucleotide probes for SRB in parallel. Chemical concentration profiles within the biofilm were also measured using microelectrodes for O2, S2-, NO3- and pH. In situ hybridization revealed that the SRB probe-stained cells were distributed throughout the biofilm even in the oxic surface zone in all states from single scattered cells to clustered cells. The higher fluorescence intensity and abundance of SRB probe-stained cells were found in the middle part of the biofilm. This result corresponded well with O2 and H2S concentration profiles measured by microelectrodes, showing sulfate reduction was restricted to a narrow anaerobic zone located about 500 μm below the biofilm surface. Results of the MPN and potential sulfate reducing activity (culture-dependent approaches) indicated a similar distribution of cultivable SRB in the biofilm. The majority of the general SRB probe-stained cells were hybridized with SRB 660 probe, suggesting that one important member of the SRB in the wastewater biofilm could be the genus Desulfobulbus. An addition of nitrate forced the sulfate reduction zone deeper in the biofilm and reduced the specific sulfate reduction rate as well. The sulfate reduction zone was consequently separated from O2 and NO3- respiration zones. Anaerobic H2S oxidation with NO3- was also induced by addition of nitrate to the medium.


2001 ◽  
Vol 44 (8) ◽  
pp. 7-14 ◽  
Author(s):  
J. Weijma ◽  
A.J.M. Stams

An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens interact cooperatively or competitively at substrate level. This interaction has large technological implications as it determines the final product of methanol mineralization, methane or carbon dioxide. The degradation route of methanol may be entirely different when environmental conditions change. Direct methanogenesis from methanol seems the predominant mineralization route under mesophilic conditions both in the absence and the presence of sulfate. Under thermophilic conditions methanol oxidation to carbon dioxide and hydrogen appears to play an important role. The UASB technology for mesophilic digestion of methanolic waste has presently reached full-scale maturity. The potential of methanol as feedstock for anaerobic processes is discussed.


1997 ◽  
Vol 36 (12) ◽  
pp. 143-150 ◽  
Author(s):  
Shuzo Tanaka ◽  
Young-Ho Lee

Control of sulfate reduction by adding molybdate was investigated to enhance the methane production under batch and continuous operation in the anaerobic digestion of a sulfate-rich lysine wastewater. In phase 1 of the continuous operation, four anaerobic filters were fed with the lysine wastewater and then added with molybdate at 1,3,5 and 10 mM just after methane producing bacteria (MPB) were completely inhited by H2S produced by sulfate reducing bacteria (SRB). In phase 2, three anaerobic filters were operated with continuous or intermittent addition of 3 mM molybdate from the beginning of operation, including one with no molybdate as a control. Batch experiments revealed that the sulfate reduction was strongly inhibited and finally ceased by adding 3 mM or more of molybdate, resulting in great enhancement of the methane production. In phase 1 of the continuous experiments, all reactors showed the cessation of the methane production when the content of H2S reached 9–10 % in biogas, but the MPB activity was gradually recovered after initiating the molybdate addition at 3 or 5 mM. The 10 mM dosage of molybdate, however, had an inhibiting effect to MPB as well as SRB, resulting in the accumulation of acetate within the reactor. In phase 2, the control reactor continued to decrease the methane production, and a methane conversion rate was only 3 % in the control, while 35 and 10 % in continuously-added and intermittently-added reactors, respectively. Thus, it was confirmed that the MPB activity was greatly enhanced under control of the SRB activity by the continuous addition of molybdate. Comparing phase 2 with phase 1, addition from the start-up of the process is considered more effective than addition after the methane production dropped in the control of the sulfate reduction by molybdate.


2019 ◽  
Vol 85 (14) ◽  
Author(s):  
J. Buongiorno ◽  
L. C. Herbert ◽  
L. M. Wehrmann ◽  
A. B. Michaud ◽  
K. Laufer ◽  
...  

ABSTRACTGlacial retreat is changing biogeochemical cycling in the Arctic, where glacial runoff contributes iron for oceanic shelf primary production. We hypothesize that in Svalbard fjords, microbes catalyze intense iron and sulfur cycling in low-organic-matter sediments. This is because low organic matter limits sulfide generation, allowing iron mobility to the water column instead of precipitation as iron monosulfides. In this study, we tested this with high-depth-resolution 16S rRNA gene libraries in the upper 20 cm at two sites in Van Keulenfjorden, Svalbard. At the site closer to the glaciers, iron-reducingDesulfuromonadales, iron-oxidizingGallionellaandMariprofundus, and sulfur-oxidizingThiotrichalesandEpsilonproteobacteriawere abundant above a 12-cm depth. Below this depth, the relative abundances of sequences for sulfate-reducingDesulfobacteraceaeandDesulfobulbaceaeincreased. At the outer station, the switch from iron-cycling clades to sulfate reducers occurred at shallower depths (∼5 cm), corresponding to higher sulfate reduction rates. Relatively labile organic matter (shown by δ13C and C/N ratios) was more abundant at this outer site, and ordination analysis suggested that this affected microbial community structure in surface sediments. Network analysis revealed more correlations between predicted iron- and sulfur-cycling taxa and with uncultured clades proximal to the glacier. Together, these results suggest that complex microbial communities catalyze redox cycling of iron and sulfur, especially closer to the glacier, where sulfate reduction is limited due to low availability of organic matter. Diminished sulfate reduction in upper sediments enables iron to flux into the overlying water, where it may be transported to the shelf.IMPORTANCEGlacial runoff is a key source of iron for primary production in the Arctic. In the fjords of the Svalbard archipelago, glacial retreat is predicted to stimulate phytoplankton blooms that were previously restricted to outer margins. Decreased sediment delivery and enhanced primary production have been hypothesized to alter sediment biogeochemistry, wherein any free reduced iron that could potentially be delivered to the shelf will instead become buried with sulfide generated through microbial sulfate reduction. We support this hypothesis with sequencing data that showed increases in the relative abundance of sulfate reducing taxa and sulfate reduction rates with increasing distance from the glaciers in Van Keulenfjorden, Svalbard. Community structure was driven by organic geochemistry, suggesting that enhanced input of organic material will stimulate sulfate reduction in interior fjord sediments as glaciers continue to recede.


Sign in / Sign up

Export Citation Format

Share Document