Secondary wastewater disposal for crop irrigation with minimal risks

2001 ◽  
Vol 43 (10) ◽  
pp. 139-146 ◽  
Author(s):  
G. Oron ◽  
R. Armon ◽  
R. Mandelbaum ◽  
Y. Manor ◽  
C. Campos ◽  
...  

A critical objective for any wastewater reuse program is to close the gap between supply of and demand for water and to minimize health and environmental hazards. Thus, the effects of treated effluent on crops, soils and community health must be considered carefully. When applying wastewater to soil-plant systems, it is to be noted that the passage of water through the soil reduces considerably the number of microorganisms carried out by the reclaimed wastewater. Nevertheless, there is a need to study the real rate of organism decay subject to water quality, soil and vegetable characteristics, and irrigation method. The aim of this work is to determine the fate of the fecal coliforms, coliphages F+ and CN13, and helminth eggs survival during the application of reclaimed wastewater in a vineyard orchard near the City of Arad (Israel) via onsurface and subsurface drip irrigation systems. Wastewater obtained from a stabilization pond, and soil samples were tested and an important decrease of microorganisms was reached in both cases, with the better values obtained with the sub-surface drip irrigation system.

2000 ◽  
Vol 42 (1-2) ◽  
pp. 75-79 ◽  
Author(s):  
C. Campos ◽  
G. Oron ◽  
M. Salgot ◽  
L. Gillerman

A critical objective for any wastewater reuse programme is to minimise health and environmental hazard. When applying wastewater to soil–plant systems, it is to be noted that the passage of water through the soil considerably reduces the number of microorganisms carried by the reclaimed wastewater. Factors that affect survival include number and type of microorganisms, soil organic matter content, temperature, moisture, pH, rainfall, sunlight, protection provided by foliage and antagonism by soil microflora. The purpose of this work was to examine the behaviour of fecal pollution indicators in a soil irrigated with treated wastewater under onsurface and subsurface drip irrigation. The experiment was conducted in a vineyard located at a commercial farm near the City of Arad (Israel). Wastewater and soil samples were monitored during the irrigation period and examined for fecal coliforms, somatic and F+ coliphages and helminth eggs. Physico-chemical parameters were controlled in order to determine their relationship with removal of microorganisms. The results showed high reduction of the concentration of microorganisms when wastewater moves through the soil; and a good correlation between the reduction of fecal pollution indicators and moisture content, organic matter concentration and pH. The application of secondary treated domestic wastewater in this specific soil and under these irrigation systems affect the survival of microorganisms, thus reducing the health and environmental risk.


2019 ◽  
Vol 25 (9) ◽  
pp. 41-53
Author(s):  
Heba Najem Abid ◽  
Maysoon Basheer Abid

Soil wetted pattern from a subsurface drip plays great importance in the design of subsurface drip irrigation (SDI) system for delivering the required water directly to the roots of the plant. An equation to estimate the dimensions of the wetted area in soil are taking into account water uptake by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, three soil textures namely loamy sand, sandy loam, and loam soil were used with three different types of crops tomato, pepper, and cucumber, respectively, and different values of drip discharge, drip depth, and initial soil moisture content were proposed. The soil wetting patterns were obtained at every thirty minutes for a total time of irrigation equal to three hours. Equations for wetted width and depth were predicted and evaluated by utilizing the statistical parameters (model efficiency (EF), and root mean square error (RMSE)). The model efficiency was more than 95%, and RMSE did not exceed 0.64 cm for three soils. This shows that evolved formula can be utilized to describe the soil wetting pattern from SDI system with good accuracy.      


2010 ◽  
Author(s):  
Freddie R Lamm ◽  
Paul D Colaizzi ◽  
James P Bordovsky ◽  
Todd P Trooien ◽  
Juan Enciso-Medina ◽  
...  

2020 ◽  
Author(s):  
Kévin Lequette ◽  
Nassim Ait-Mouheb ◽  
Nicolas Adam ◽  
Marine Muffat-Jeandet ◽  
Valérie Bru-Adan ◽  
...  

AbstractDripper clogging reduces the performance and service life of a drip irrigation system. The impact of chlorination (1.5 ppm of free chlorine during 1 h application) and pressure flushing (0.18 MPa) on the biofouling of non-pressure-compensating drippers fed by real reclaimed wastewater was studied at lab scale using Optical Coherence Tomography. The effect of these treatments on microbial composition (bacteria and eukaryotes) was also investigated by High-throughput DNA sequencing. Biofouling was mainly observed in inlet, outlet and return areas of the drippers. Chlorination limited biofilm development mainly in the mainstream of the milli-labyrinth channel. It was more efficient when combined with pressure flushing. Moreover, chlorination was more efficient in maintaining the water distribution uniformity. It reduced the bacterial concentration and the diversity of the dripper biofilms compared to the pressure flushing method. This method strongly modified the microbial communities, promoting chlorine-resistant bacteria such as Comamonadaceae or Azospira. Inversely, several bacterial groups were identified as sensitive to chlorination such as Chloroflexi and Planctomycetes. Nevertheless, one month after stopping the treatments the bacterial diversity re-increased and the chlorine-sensitive bacteria such as Chloroflexi phylum and the Saprospiraceae, Spirochaetaceae, Christensenellaceae and Hydrogenophilaceae families re-emerged with the growth of biofouling, highlighting the resilience of the bacteria from drippers. Based on PCoA analyses, the structure of the communities still clustered separately from never-chlorinated drippers, showing that the effect of chlorination was still present one month after stopping the treatment.HighlightsThe fouling of drippers is a bottleneck for drip irrigation using reclaimed wastewaterBiofouling was lowest when chlorination was combined with pressure flushingThe β-Proteobacteria and Firmicutes contain chlorine resistant bacteriaThe decrease of Chloroflexi by chlorination was transitoryThe bacterial community was resilient after the interruption of cleaning events


2004 ◽  
Vol 50 (2) ◽  
pp. 61-68 ◽  
Author(s):  
C. Choi ◽  
I. Song ◽  
S. Stine ◽  
J. Pimentel ◽  
C. Gerba

Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.


2018 ◽  
Vol 34 (1) ◽  
pp. 213-221 ◽  
Author(s):  
Steven R. Evett ◽  
Gary W. Marek ◽  
Paul D. Colaizzi ◽  
Brice B. Ruthardt ◽  
Karen S. Copeland

Abstract. Large, precision weighing lysimeters can have accuracies as good as 0.04 mm equivalent depth of water, adequate for hourly and even half-hourly determinations of evapotranspiration (ET) rate from crops. Such data are important for testing and improving simulation models of the complex interactions of surface water and energy balances, soil physics, plant growth, and biophysics that determine crop ET in response to rapid microclimate dynamics. When crops are irrigated with sprinkler systems or other rapid additions of water, the irrigation event is typically short enough that not much ET data are compromised by the lysimeter mass change due to irrigation. In contrast, subsurface drip irrigation (SDI) systems may take many hours to apply an irrigation, during which time the lysimeter mass change is affected by both ET rate and irrigation application rate. Given that irrigation application rate can be affected by pressure dynamics of the irrigation system, emitter clogging and water viscosity changes with temperature over several-hour periods, it can be difficult to impossible to separate the ET signal from the interference of the irrigation application. The inaccuracies in the data can be important, particularly for comparisons of sprinkler and SDI systems, since they are of the order of 8 to 10% of daily ET. We developed an SDI irrigation system to apply irrigations of up to 50 mm to large weighing lysimeters while limiting the period of lysimeter mass change due to irrigation delivery to approximately ten minutes by storing the water needed for irrigation in tanks suspended from the lysimeter weighing system. The system applied water at the same rate as the SDI system in the surrounding field, allowed irrigation over periods of any duration, but often exceeding 12 h, without directly affecting lysimeter mass change and the accuracy of ET rate determinations, and allowed irrigation overnight without compromising lysimeter daily ET measurements. Errors in lysimeter ET measurements using the previous SDI system, which was directly connected to the field irrigation system, were up to 10% of daily ET compared with negligible error using the new system. Errors using the previous, directly connected, SDI system varied over time due to variable system pressure, and possibly due to water temperature (viscosity) changes and emitter clogging. With the new system, all of the water transferred to the lysimeter weighing system was eventually applied by the SDI system regardless of temperature, pressure, or emitter clogging. Differences between planned and applied irrigation depth were less than 2% over the irrigation season. Keywords: Evapotranspiration, ET, Subsurface drip irrigation, SDI, Weighing lysimeter.


Sign in / Sign up

Export Citation Format

Share Document