Critical velocity of floatables in Combined Sewer Overflow (CSO) chambers

2001 ◽  
Vol 44 (2-3) ◽  
pp. 287-294 ◽  
Author(s):  
J. Cigana ◽  
G. Lefebvre ◽  
C. Marche

Although the efficiency of underflow baffles has never been clearly proven, these underflow baffles have gained in popularity over the last few years as a viable means to intercept floatables in Combined Sewer Overflows (CSOs). These pilot scale essays, performed in a 17.0 metres basin at various flowrates, show that a critical horizontal velocity (VCR) may develop in the overflow chamber. Whenever this critical velocity is exceeded, floatables that would normally rise to the surface are kept within the flow and never intercepted, thus rendering the underflow baffle ineffective. The equation relating the critical horizontal velocity to the vertical velocity is found to be: VCR = 16 w RH1/6.

2005 ◽  
Vol 51 (2) ◽  
pp. 65-70 ◽  
Author(s):  
John F. Cigana ◽  
Martin Couture

Underflow baffles have gained in popularity over the years as a viable mean to intercept floatables in Combined Sewer Overflows (CSOs). This choice was mainly justified by the extremely low capital cost (CAPEX) and operational cost (OPEX) of this solution, although the efficiency of underflow baffles has never been clearly proven. The only similar application to underflow baffles are scum boards in grit chambers and clarifier. However, the flow conditions at CSOs vary considerably from those in grit chambers and clarifier. For this reason, review of the behavior of floatables in a rapid flow is paramount. Only then can comprehensive design criteria for underflow baffles and overflow chambers be suggested. Pilot scale tests, performed in a 17 metres long basin at various flowrates, had already shown that a critical horizontal velocity for floatables (Vcr) may develop in the overflow chambers. In this follow up study, the fate of intercepted floatables was investigated. It appears from this latest data that permanent capture of floatables decreases rapidly with an increase in the horizontal velocity of the flow, no matter what the baffle depth. Baffle depth increases capture at lower velocities (0.17 m/s) but become irrelevant at higher velocities (0.61 m/s). This data suggests that capture efficiency of existing underflow baffles in overflow chambers can be, at best, very low whenever the horizontal velocity increases above 0.30 m/s or 1 ft/s.


1997 ◽  
Vol 32 (1) ◽  
pp. 169-184 ◽  
Author(s):  
J. SCHMIDT ◽  
P. SETO ◽  
D. Averill

Abstract Combined sewer overflows (CSOs) have been recognized for many years as a pollution problem within the Great Lakes ecosystem. CSOs were identified as a source of contamination in 10 of the 17 Canadian “Areas of Concern” designated by the International Joint Commission, and were considered a major problem in Hamilton Harbour and the Metropolitan Toronto Waterfront. Satellite treatment systems (located upstream in the sewerage system) were identified as being significantly more cost effective than other CSO control options in a feasibility study conducted for Metropolitan Toronto. Consequently, a multi-agency initiative was established in 1993 to examine the treatment of CSOs at a pilot-scale facility in the City of Scarborough. The technologies evaluated during two experimental seasons in 1994 and 1995 included a vortex separator, a circular clarifier, a horizontal-flow plate clarifier and an inclined rotary drum screen. Performance of the technologies is being assessed against a draft policy proposed by the Ontario Ministry of Environment and Energy. Results to date have indicated that the vortex separator and the plate clarifier under “best conditions” were capable of 50% TSS removal and 30% BOD5 removal and should be capable of satisfying the policy.


1998 ◽  
Vol 38 (10) ◽  
pp. 57-63 ◽  
Author(s):  
J. Cigana ◽  
G. Lefebvre ◽  
C. Marche ◽  
M. Couture

Underflow baffles have gained in popularity over the last few year as a viable means to intercept floatables in Combined Sewer Overflows (CSOs). This has happened although the efficiency of underflow baffles has never been clearly proven. Furthermore, there are no guidelines helping planners in the correct and efficient design of underflow baffles. This article proposes design criteria deduced from pilot scale essays performed in a 17 meters basin at various flowrates. These new informations can be used in two different ways. First, these criteria can be used to correctly design a new overflow chamber. Secondly, these criteria can be used to evaluate the efficiency of existing overflow chambers. Preliminary analysis of existing chambers show that interception efficiency of floatables can be very low.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 15-22 ◽  
Author(s):  
M. Cherrered ◽  
B. Chocat

Until a few years ago, there was not much research in France into Combined Sewer Overflow phenomena in storm weather. The water of urban runoff has always been considered “clean” and one considered that the dilution of dry weather flows in storm water decreased the impact of the pollution generated by overflows. Now, with increased urban development and realization of the importance of pollution caused by urban runoff, the problem can be considered differently. Indeed, some quality studies of receiving waters show that combined sewer networks represent an important pollution source for the natural environment, due to the increasing relative effect of combined sewer overflow discharge into receiving waters. Thus, combined sewer overflows have until recently been the least known part of the sewer system. In this present communication, methodology to estimate combined overflows has been elaborated after exploitation of data resulted from ten French real case studies where such problems were observed. This study has been realized in four steps:- A bibliography study to discover the actual state of the problem in terms of existent methods concerning both experimentation and modelling and to define the needs of the research.- Ten French studies have been selected, analysed, and used to define the different methods used, and to show methodological lacunas from the observations and results realized. Elements of improvement have been proposed.- Methods and new propositions have been defined and a coherent methodological diagram has been realized to compare and test these methods.- Computer tools have been conceived and tested in the ten study cases.


1996 ◽  
Vol 31 (3) ◽  
pp. 453-472 ◽  
Author(s):  
M. Stirrup

Abstract The Regional Municipality of Hamilton-Wentworth operates a large combined sewer system which diverts excess combined sewage to local receiving waters at over 20 locations. On average, there are approximately 23 combined sewer overflows per year, per outfall. The region’s Pollution Control Plan, adopted by Regional Council in 1992, concluded that the only reasonable means of dealing with large volumes of combined sewer overflow in Hamilton was to intercept it at the outlets, detain it and convey it to the wastewater treatment plant after the storm events. The recommended control strategy relies heavily on off-line storage, with an associated expansion of the Woodward Avenue wastewater treatment plant to achieve target reductions of combined sewer overflows to 1–4 per year on average. The region has begun to implement this Pollution Control Plan in earnest. Three off-line detention storage tanks are already in operation, construction of a fourth facility is well underway, and conceptual design of a number of other proposed facilities has commenced. To make the best possible use of these facilities and existing in-line storage, the region is implementing a microcomputer-based real-time control system. A number of proposed Woodward Avenue wastewater treatment plant process upgrades and expansions have also been undertaken. This paper reviews the region's progress in implementing these control measures.


1994 ◽  
Vol 30 (1) ◽  
pp. 167-175
Author(s):  
Alan H. Vicory ◽  
Peter A. Tennant

With the attainment of secondary treatment by virtually all municipal discharges in the United States, control of water pollution from combined sewer overflows (CSOs) has assumed a high priority. Accordingly, a national strategy was issued in 1989 which, in 1993, was expanded into a national policy on CSO control. The national policy establishes as an objective the attainment of receiving water quality standards, rather than a design storm/treatment technology based approach. A significant percentage of the CSOs in the U.S. are located along the Ohio River. The states along the Ohio have decided to coordinate their CSO control efforts through the Ohio River Valley Water Sanitation Commission (ORSANCO). With the Commission assigned the responsibility of developing a monitoring approach which would allow the definition of CSO impacts on the Ohio, research by the Commission found that very little information existed on the monitoring and assessment of large rivers for the determination of CSO impacts. It was therefore necessary to develop a strategy for coordinated efforts by the states, the CSO dischargers, and ORSANCO to identify and apply appropriate monitoring approaches. A workshop was held in June 1993 to receive input from a variety of experts. Taking into account this input, a strategy has been developed which sets forth certain approaches and concepts to be considered in assessing CSO impacts. In addition, the strategy calls for frequent sharing of findings in order that the data collection efforts by the several agencies can be mutually supportive and lead to technically sound answers regarding CSO impacts and control needs.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1295-1304 ◽  
Author(s):  
C. Jefferies

Visible pollution discharged from two combined sewer overflows were studied using passive Trash Trap devices and the UK Water Research Centre Gross Solids Sampler. Relationships are presented for the number of visible solids and the mass of gross solids discharged during an event. The differences in the behaviour of the overflow types are reported on and they are categorised using the Trash Traps.


1993 ◽  
Vol 27 (5-6) ◽  
pp. 93-104 ◽  
Author(s):  
H. Brombach ◽  
C. Xanthopoulos ◽  
H. H. Hahn ◽  
W. C. Pisano

In 1987 the first vortex solids separator facility in Germany was installed for combined sewer overflow (CSO) control. The separation efficiency was optimized in the hydraulic laboratory using scaled down models with artificial tracers to simulate typical sewage particulates. The station has two parallel operating vortex separators and serves a connected and impervious area of about 11 hectares (ha) and 1,500 people. The specific storage volume of the station is 7.2 m3 per ha. Two evaluation programs were conducted. The first evaluation phase noted the operational reliability, hydraulic loads, overflow frequencies and water mass balances. The second phase monitored separation efficiencies. The evaluation showed that vortex solids separators are now ready for use in CSO control.


Sign in / Sign up

Export Citation Format

Share Document