Preliminary investigation of the potential of four tropical emergent macrophytes for treatment of pre-treated pulp and papermill wastewater in Kenya

2003 ◽  
Vol 48 (5) ◽  
pp. 223-231 ◽  
Author(s):  
M.A. Abira ◽  
H.W. Ngirigacha ◽  
J.J.A. van Bruggen

The potential of four aquatic macrophytes for treatment of wastewater in constructed wetlands was investigated in bucket mesocosms at Pan African Paper Mills (E.A) Limited. The buckets were operated as semi-continuous batch reactors with reversed vertical flow for a period of 3 months. Four treatments were applied involving two hydraulic retention times (HRT) and two wastewater concentrations. Plants appeared healthier and greener in treatments at HRT5 than at HRT10. Cyperus immensus and Typha domingensis had higher biomass gain compared to the other two species. Plant nitrogen and phosphorus content, based on dry weight, was lower at the end of the experiment than at the beginning in all treatments for all species. The removal efficiency achieved for COD ranged from 10 to 55% for planted buckets at HRT5 and 15 to 65% at HRT10 for similar buckets. The mean percentage COD removal in unplanted buckets was significantly lower than in planted ones. TSS removal efficiency ranged from 44-86%. Buckets planted with Typha exhibited the highest removal efficiency in all treatments. Those at HRT5 showed significantly higher removal efficiencies than those at HRT10 for all species. The results indicate that the plants are suitable for use in constructed wetlands for treatment of the wastewater provided the appropriate treatment is applied.

2010 ◽  
Vol 62 (11) ◽  
pp. 2527-2535 ◽  
Author(s):  
S. P. Langevin ◽  
B. Q. Liao

In-mill thermophilic treatment of individual wastewater streams to achieve water system closure has received much attention in pulp and paper mills. Aerobic biological treatment of thermomechanical pulping (TMP) condensate was conducted using thermophilic (55°C) and mesophilic (35°C) sequencing batch reactors (SBRs) for a period of 143 days at a cyclic time of 6, 8 and 12 h. A soluble chemical oxygen demand (SCOD) removal efficiency of 77 to 91% was achieved, given an organic loading rate of 0.7–1.3 kg/m3 d. The COD removal efficiency of the thermophilic SBR was slightly lower than that of the mesophilic SBR. Majority of the soluble COD was removed by biodegradation with a small portion (9–13%) of soluble COD stripped by aeration. The settleability (sludge volume index) and the flocculating ability (effluent suspended solids) of thermophilic sludge were comparable to or slightly poorer than that of the mesophilic sludge. The level of filaments in thermophilic sludge was usually higher than that in mesophilic sludge. The results of the study indicate that both thermophilic and mesophilic SBRs can be successfully operated for in-mill treatment of TMP condensate. The treated effluent has the potential for subsequent reuse in the mill.


2012 ◽  
Vol 66 (10) ◽  
pp. 2138-2145 ◽  
Author(s):  
Zheli Ding ◽  
Avi Golan-Goldhirsh ◽  
Muhammad Khalid Rafiq ◽  
Tingqiang Li ◽  
Fengliang Zhao ◽  
...  

The present study was carried out to investigate the growth characteristics of different ryegrass (Lolium perenne L.) cultivars and their ability to remediate eutrophic water using floating plant-bed technology. Greenhouse and lake experiments were conducted to evaluate the grass genotypes for water remediation. Twelve cultivars of ryegrass including Grazer, Secale Cerale, Energa, Rustmaster, AngusI, Abundant, AngusII, Jivet, Gulf, Surrey, Major and Barwoltra were grown in the floating plant-bed system. The plant biomass, plant NP (nitrogen and phosphorus) accumulations and the water purification capacity of selected grasses were significantly different (P < 0.05). Abundant, AngusII and Major showed most efficient purification capacity of eutrophic water. In a greenhouse, after 26 days of growth, the eutrophic water was purified to various extents by the different ryegrass cultivars. Nitrogen removal efficiency varied from 52.20% to 73.82% and phosphorus removal efficiency ranged from 75.12% to 84.77%. In a lake experiment at Huajiachi pond, after 162 days of growth, the plant shoot biomass increased from 321.5 to 922.8 g/m2 dry weight basis, shoot NP accumulation ranged from 61.5 to 168.2 mg m−2 d−1 and 11.9 to 47.2 mg m−2 d−1 respectively. NP accumulation rate by the various cultivars of ryegrass was highly positively correlated to their biomass production and water purification capacity. Thus, plant biomass could be used as an indicator for assessing purification capacity of a ryegrass cultivar.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 868-874 ◽  
Author(s):  
Robert F. Polomski ◽  
Douglas G. Bielenberg ◽  
Ted Whitwell ◽  
Milton D. Taylor ◽  
William C. Bridges ◽  
...  

Intensive production of container-grown nursery and greenhouse crops in soilless substrate may result in significant leaching of nutrients and pesticides. The resulting runoff can escape from production areas and negatively impact surface and ground water. Constructed wetlands (CWs) have been shown to be a simple, low-technology method for treating agricultural, industrial, and municipal wastewater. We investigated the nitrogen (N) and phosphorus (P) removal potential by a vegetated, laboratory-scale subsurface flow (SSF) CW system. Over an 8-week period, five commercially available aquatic garden plants received a range of N and P (0.39 to 36.81 mg·L−1 N and 0.07 to 6.77 mg·L−1 P) that spanned the rates detected in nursery runoff. Whole plant dry weight was positively correlated with N and P supplied. Highest N and P recovery rates were exhibited by Thalia geniculata f. rheumoides Shuey and Oenenathe javanica (Blume) DC. ‘Flamingo’, Phyla lanceolata (Michx.) Greene also had high P recovery rates. The potential exists for using SSF CWs to concomitantly produce aquatic garden plants and attenuate nutrients in a sustainable nursery enterprise.


2012 ◽  
Vol 455-456 ◽  
pp. 1019-1024 ◽  
Author(s):  
Hong Xu Bao ◽  
Xi Ping Ma ◽  
Jian Wang ◽  
Kui Jing ◽  
Man Li Shen ◽  
...  

A sequencing batch reactors (SBR) was adopted to investigate the denitrifying phosphorus removal efficiency employing nitrite as electron acceptor under anaerobic/anoxic condition. The experimental results showed that high nitrogen and phosphorus removal efficiency could be obtained under the following conditions: nitrite concentration of 30~40 mg/L, COD concentration of 400 mg/L, pH 8.0±0.2 in anaerobic stage and pH 7.2±0.2 in anoxic stage, sludge retention time (SRT) of 22 days. When the reactor performed steadily, a dominant functional strain was screened from the activated sludge, which has high nitrite and phosphorus removal efficiency. Batch tests results showed that the removal degree of nitrite and phosphorus could reach 99.18% and 84.94% respectively when their concentrations were 20mg/L and 10mg/L. according to the morphology and physio-biochemical characteristics, and the results of 16S rDNA sequencing, it is determined that the strain belongs to the Genus of Sphingobacterium. The experimental results achieved in this study might offer guidance to the development of shortcut denitrifying phosphorus removal process.


1996 ◽  
Vol 31 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Patricia Chow-Fraser ◽  
Barb Crosbie ◽  
Douglas Bryant ◽  
Brian McCarry

Abstract During the summer of 1994, we compared the physical and nutrient characteristics of the three main tributaries of Cootes Paradise: Spencer, Chedoke and Borer’s creeks. On all sampling occasions, concentrations of CHL α and nutrients were always lowest in Borer’s Creek and highest in Chedoke Creek. There were generally 10-fold higher CHL α concentrations and 2 to 10 times higher levels of nitrogen and phosphorus in Chedoke Creek compared with Spencer Creek. Despite this, the light environment did not differ significantly between Spencer and Chedoke creeks because the low algal biomass in Spencer Creek was balanced by a relatively high loading of inorganic sediments from the watershed. Laboratory experiments indicated that sediments from Chedoke Creek released up to 10 µg/g of soluble phosphorus per gram (dry weight) of sediment, compared with only 2 µg/g from Spencer Creek. By contrast, sediment samples from Spencer Creek contained levels of polycyclic aromatic hydrocarbon that were as high as or higher than those from Chedoke Creek, and much higher than those found in Borer’s Creek. The distribution of normalized PAH concentrations suggests a common source of PAHs in all three tributaries, most likely automobile exhaust, since there were high concentrations of fluoranthene and pyrene, both of which are derivatives of engine combustion.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 101-108
Author(s):  
X. Wang ◽  
T. H. Mize ◽  
F. M. Saunders ◽  
S. A. Baker

Research is focused on an integrated way to simultaneously optimize the bleaching operations and subsequent wastewater treatment for pulp and paper mills. Bleach wastewaters from ClO2-bleached pulping studies at Institute of Paper Science and Technology (IPST) were used as the feed for batch reactors to test and rank the treatability and kinetics. The key aspect of the system is the use of sequential anaerobic/aerobic phases to enhance reductive dehalogenation of chloro-organic materials. Two continuous reactor systems, one operated in an anaerobic-aerobic mode and a second in an aerobic-aerobic mode, received bleaching wastewater obtained from a full-scale plant. Acclimated cultures from both continuous reactors were used to quantify the AOX (Adsorbable Organic Halide) and COD removal from various bleaching wastewaters. In general, the sequential anaerobic/aerobic treatment of bleach wastewater can improve both biotreatability and degradation rates.


2021 ◽  
Vol 232 (1) ◽  
Author(s):  
Fátima Resende Luiz Fia ◽  
Antonio Teixeira de Matos ◽  
Ronaldo Fia ◽  
Mateus Pimentel de Matos ◽  
Alisson Carraro Borges ◽  
...  

1998 ◽  
Vol 38 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Germán Cuevas-Rodríguez ◽  
Óscar González-Barceló ◽  
Simón González-Martínez

This research project was conducted to analyze the performance of a SBR reactor when being fed with anaerobically fermented wastewater. Important was to determine the capacity of the system to remove nitrogen and phosphorus. Two SBR reactors, each one with a volume of 980 liters, were used: one used as fermenter and the other as activated sludge SBR. Using 8-hour cycles, the reactors were operated and studied during 269 days. The fermenter produced an effluent with an average value of 223±24 mg/l of volatile fatty acids. The activated sludge SBR was tested under 3 organic loading rates of 0.13, 0.25, and 0.35 kgCODtotal/kgTSS·d. For the three tested organic loading rates, PO4-P concentrations under 1.1 mg/l and COD between 37 and 38 mg/l were consistently achieved. Exceptionally high NH4-N influent values were measured during the time of the experimentation with the organic load of 0.25 kgCODtotal/kgTSS·d, not reaching in this case full nitrification. Denitrification was observed during the fill phase in every cycle. SVI values between 40 and 70 were determined during the experimental runs.


Sign in / Sign up

Export Citation Format

Share Document