Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse

2004 ◽  
Vol 50 (5) ◽  
pp. 1-8 ◽  
Author(s):  
T. Wintgens ◽  
M. Gallenkemper ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms and are the subject of environmental and human health concerns. The effluents of wastewater treatment plants contribute to the emission of estrogenically active substances into the environment. Membrane technology, which is an advanced wastewater treatment option, is the subject of this research. The removal techniques under investigation are membrane bioreactors, reverse osmosis, and nanofiltration. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention of NP and BPA ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. Regarding the retention of BPA no dependency on the contact angle was observed. Results of the investigation of a full-scale landfill leachate treatment plant indicate a bisphenol A (BPA) removal of more than 98% with membrane bioreactors and reverse osmosis. The mass balance indicates that biological degradation is the most important removal process in the membrane bioreactor configuration.

2006 ◽  
Vol 6 (6) ◽  
pp. 19-26 ◽  
Author(s):  
J.Y. Hu ◽  
X. Chen

Three pilot-scale submerged membrane bioreactors (MBRs) in a local wastewater treatment plant (K, M and Z) were studied with the objective to compare the performance of pre-denitrification MBR systems in eliminating the estrogenic activity of the effluent of primary clarifier. A total of 5 batches of samples, which included influent, effluent, supernatant and sludge from the respective aerobic and anoxic tanks were collected over the span. They were investigated by using the developed solid-phase extraction (SPE) protocol coupled with a modified yeast-based estrogen screen (YES) assay. From the results, it could be seen that M MBR demonstrated the best endocrine disrupting compounds (EDCs) removal efficiency. The fate and behavior of EDCs in MBR systems were fairly understood with estrogenic activity formation dominating in the anoxic tank and removal dominating in the aerobic tank. It is believed that the sorption of EDCs onto the sludge as well as biodegradation of EDCs might be the key mechanisms for the EDCs removal. The low response of YES when dealing with influent samples was mainly due to the inhibition and antagonist effects induced by the influent samples on yeast cells.


2003 ◽  
Vol 48 (3) ◽  
pp. 127-134 ◽  
Author(s):  
T. Wintgens ◽  
M. Gallenkemper ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. Industrial chemicals with estrogenic effects were detected in large quantities in landfill leachates. Membrane technology has proven to be an effective barrier to these substances and thus widely applied in the treatment of landfill leachate. The removal techniques under investigation are membrane bioreactors, nanofiltration, activated carbon adsorption, ozonation as well as reverse osmosis. Investigations were conducted at two different landfill leachate treatment plants with a variety of process configurations. The xenoestrogenic substances nonylphenol and bisphenol A were detected in high μg/L-ranges in raw landfill leachate. Membrane bioreactors (MBRs) were capable of removing more than 80% of the nonylphenol load. Final effluent concentrations range between 1-12 μg/L nonylphenol and 3-30 μg/L bisphenol A respectively. Reverse osmosis treatment proved to be less effective in nonylphenol and bisphenol A removal than MBRs with further polishing stages like nanofiltration and activated carbon adsorption.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
T. Vega-Morales ◽  
Z. Sosa-Ferrera ◽  
J. J. Santana-Rodríguez

Liquid and solid samples from two wastewater treatment plants (WWTPs) on Gran Canaria Island (Spain) have been tested for the presence of compounds with endocrine-disrupting properties. The selected degradation stages were sampled bimonthly from each WWTP over the 12-month period from July 2010 to July 2011. The analytical methods used for the determination of the endocrine-disrupting compounds (EDCs) were based on on-line solid phase extraction, microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE) coupled to UHPLC-MS/MS. All of the hyphenated methodologies employed in this work showed good recoveries (72–104%) and sensitivities, with LODs lower than 7.0 ng L−1and 6.3 ng g−1for the dissolved and solid fractions, respectively. We have also evaluated the estrogenicity of the samples in terms of their estradiol equivalent concentrations (EEQs). The chemical analysis of the selected EDCs revealed fairly low concentrations for both natural and synthetic oestrogens, alkylphenolic compounds, and bisphenol-A in each of the dissolved, particulate, and sludge samples (ng L−1or ng g−1). However, the estimated estrogenic activity indicated that the majority of samples could represent an important environmental risk, clearly surpassing the threshold to exert deleterious consequences on living beings.


2016 ◽  
Vol 227 (6) ◽  
Author(s):  
Ana Rita Carvalho ◽  
Vítor Cardoso ◽  
Alexandre Rodrigues ◽  
Maria João Benoliel ◽  
Elizabeth Duarte

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


2017 ◽  
Vol 77 (2) ◽  
pp. 337-345 ◽  
Author(s):  
I. Brückner ◽  
K. Kirchner ◽  
Y. Müller ◽  
S. Schiwy ◽  
K. Klaer ◽  
...  

Abstract The project DemO3AC (demonstration of large-scale wastewater ozonation at the Aachen-Soers wastewater treatment plant, Germany) of the Eifel-Rur Waterboard contains the construction of a large-scale ozonation plant for advanced treatment of the entire 25 million m³/yr of wastewater passing through its largest wastewater treatment plant (WWTP). In dry periods, up to 70% of the receiving water consists of treated wastewater. Thus, it is expected that effects of ozonation on downstream water biocoenosis will become observable. Extensive monitoring of receiving water and the WWTP shows a severe pollution with micropollutants (already prior to WWTP inlet). (Eco-)Toxicological investigations showed increased toxicity at the inlet of the WWTP for all assays. However, endocrine-disrupting potential was also present at other sampling points at the WWTP and in the river and could not be eliminated sufficiently by the WWTP. Total cell counts at the WWTP are slightly below average. Investigations of antibiotic resistances show no increase after the WWTP outlet in the river. However, cells carrying antibiotic-resistant genes seem to be more stress resistant in general. Comparing investigations after implementation of ozonation should lead to an approximation of the correlation between micropollutants and water quality/biocoenosis and the effects that ozonation has on this matter.


Sign in / Sign up

Export Citation Format

Share Document