Nitrogen removal from sludge water with SBR process: start-up of a full-scale plant in the municipal wastewater treatment plant at Ingolstadt, Germany

2004 ◽  
Vol 50 (10) ◽  
pp. 51-58 ◽  
Author(s):  
M.J. Vallés-Morales ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
A. Iborra-Clar

The sludge water obtained from the dewatering processes following anaerobic sludge digestion contains high levels of ammonia. This sludge water is generally returned to the beginning of the waste water treatment plant process, thereby significantly increasing the nitrogen load on the biological process. In this project, the start-up of a full-scale sequencing batch reactor (SBR) process to separately treat the aforementioned sludge water is studied. Two parallel SBRs were operated over 8 hour cycles. The duration of the start-up was approximately 100 days until a hydraulic load of 225 m3/d was reached for each SBR. This paper presents the results of the start-up, highlighting the change in nitrogen concentration with time and the effect of other parameters such as temperature and suspended solids in that period. Following the project period of operation, the ammonium concentration was reduced by more than 95% on average.

2014 ◽  
Vol 1073-1076 ◽  
pp. 849-853
Author(s):  
Xiu Bin Lv ◽  
Zhi Hong Yang ◽  
Hai Zhao Zhao ◽  
Hong Ping Chen

A waste water treatment plant (WWTP) adopts sequencing batch reactor (SBR) process, which exist the problem of instable treatment effect on denitrification and dephosphorization. The total nitrogen (TN) and total phosphorus (TP) of the effluent could not reach the class A standard of discharge standard of pollutants for municipal wastewater treatment plant (GB18918-2002) (hereinafter referred to as the class A standard) as a result of different order in utilizing the carbon source between nitrification and denitrification. The step-feed procedure is used to improve the efficiency of denitrification and dephosphorization. Field experiments about the effects of the different influent distribution ratio (marked as λ) on denitrification and dephosphorization were carried out and the results showed that the effect of the effluent TN is the best and other indexes could also achieve class A standard when λ is 5:3.


1997 ◽  
Vol 35 (1) ◽  
pp. 259-267 ◽  
Author(s):  
A. G. Zilverentant

A cleaning site for road and rail car tankers emits a waste water stream of 200-250 m3/d. The waste water was originally treated in a physico-chemical waste water treatment plant. It was required to improve the effluent quality in order to meet the future discharge limits. As a possible treatment technique the sequencing batch reactor (SBR) technology, with an option for powdered activated carbon (PAC) dosing, was selected. Waste water originating from road and rail car cleaning installations is known to be potentially toxic/inhibitory. As a first step in the design procedure a pilot test was run for a period of 8 months. This pilot showed the SBR to be an appropriate technology for the treatment of the waste water. The PAC option was not feasible. Based on the pilot results a full scale installation, comprising a batch reactor with a diameter of 10.4 m and a maximum water depth of 17.3 m, was designed and successfully started up. This paper presents the highlights of the total project.


2011 ◽  
Vol 6 (4) ◽  
Author(s):  
Christophe Amiel ◽  
Delphine Nawawi-Lansade ◽  
Kim Sorensen

Many recent studies have shown processes or models to minimize the energy consumption on a municipal wastewater treatment plant (WWTP) in operation. Today the main drivers are the energy and CO2 reduction. On existing plants, the potential success of achieving the Energy neutral WWTP depends on the effluent guarantees demanded and the eventual additional carbon sources on the digesters. Veolia has now developed a tool to estimate the energy consumption and the CO2 impact to select the appropriate treatment lines (water and sludge) up front at the project stage. The real challenge is to cover the needs of the plant without external carbon sources added to the digester. At the project stage, before the bid of the WWTP, due to time constraints only few comparisons can be performed to predict the energy consumption and CO2 impact and provide the best solution to reach to the energy neutral plant as electricity wise. One conclusion of the study is that, the raw water characteristics and the effluent guarantee has a great impact on the possibilities to reach the target. Furthermore, working on reducing the power consumption and on increasing the biogas production for example by a continuous Thermal hydrolysis is a good way to go towards self sufficiency.


2003 ◽  
Vol 48 (8) ◽  
pp. 9-18 ◽  
Author(s):  
C. Fux ◽  
K. Lange ◽  
A. Faessler ◽  
P. Huber ◽  
B. Grueniger ◽  
...  

Separate biological elimination of nitrogen from the digester supernatant of a municipal wastewater treatment plant (WWTP) was investigated in pilot and full-scale plants. Denitrification mainly via nitrite was achieved in a sequencing batch reactor (SBR) and a continuous flow reactor (CSTR or SHARON). Suppression of nitrite oxidation in the SBR was feasible at short aerobic/anaerobic intervals allowing for immediate denitrification of the produced nitrite. Nitrate production could also be stopped by exposing the biomass to anaerobic conditions for 11 days. Temporarily high concentrations (up to 80 gNH3-Nm-3) of free ammonia could not be considered as the major reason for inhibiting nitrite oxidation. In a full-scale SBR plant 90% of the nitrogen load was denitrified in a total hydraulic retention time (HRT) of 1.6 days and with a sludge age between 15 and 20 days. Ethanol and methanol were used for denitrification. The specific average substrate consumption was 2.2 gCODdosedg-1Nremoved with an effective biomass yield of 0.2 gCODbiomassg-1CODdosed. No dosing with base was required. In the SHARON process full nitrogen elimination was achieved only with a total HRT greater than 4 days at 29°C. The overall costs were estimated at €1.4 kg-1Nremoved for the SBR and €1.63 kg-1Nremoved in SHARON mode, respectively. The SHARON process is simple in operation (CSTR) but the tank volume has to be significantly greater than in SBR.


1998 ◽  
Vol 37 (9) ◽  
pp. 135-142 ◽  
Author(s):  
C. Hellinga ◽  
A. A. J. C. Schellen ◽  
J. W. Mulder ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

A new biological process for ammonia removal from flows containing hundreds to thousands milligrams NH+4 per litre has been developed at the Delft University of Technology. The SHARON process operates at a high temperature (30–40 °C) and pH (7–8). The process is performed without sludge retention. This enables the prevention of nitrite oxidation, leading to lower operational costs. Denitrification is used to control the pH. A full scale plant was designed (1500 m3) based on kinetic and stoichiometric parameters determined at 1.5 1. scale and model predictions. Total costs are estimated at about $1.7 per kg removed NH4+-N. The first full scale SHARON plant will be operational at the Dokhaven waste water treatment plant in Rotterdam in the beginning of 1998. This contribution focuses on the principles of the process and evaluates conditions for which application seems feasible.


2011 ◽  
Vol 63 (1) ◽  
pp. 164-170 ◽  
Author(s):  
K. De Gussem ◽  
T. Wambecq ◽  
J. Roels ◽  
A. Fenu ◽  
G. De Gueldre ◽  
...  

An ASM2da model of the full-scale waste water plant of Bree (Belgium) has been made. It showed very good correlation with reference operational data. This basic model has been extended to include an accurate calculation of environmental footprint and operational costs (energy consumption, dosing of chemicals and sludge treatment). Two optimisation strategies were compared: lowest cost meeting the effluent consent versus lowest environmental footprint. Six optimisation scenarios have been studied, namely (i) implementation of an online control system based on ammonium and nitrate sensors, (ii) implementation of a control on MLSS concentration, (iii) evaluation of internal recirculation flow, (iv) oxygen set point, (v) installation of mixing in the aeration tank, and (vi) evaluation of nitrate setpoint for post denitrification. Both an environmental impact or Life Cycle Assessment (LCA) based approach for optimisation are able to significantly lower the cost and environmental footprint. However, the LCA approach has some advantages over cost minimisation of an existing full-scale plant. LCA tends to chose control settings that are more logic: it results in a safer operation of the plant with less risks regarding the consents. It results in a better effluent at a slightly increased cost.


1997 ◽  
Vol 36 (12) ◽  
pp. 75-82 ◽  
Author(s):  
T. Kuba ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

The effect of pH on phosphorus release under anaerobic conditions was examined for denitrifying phosphorus removing bacteria (DPB) cultivated in an anaerobic-anoxic sequencing batch reactor. Also batch tests were conducted with activated sludge from a full-scale waste water treatment plant (WWTP) in order to investigate occurrence and contribution of DPB in phosphorus removal processes. In the experiments for the pH effect, enriched DPB sludge was maintained under anaerobic conditions with acetic acid (HAc) present at 5 different pH conditions (6.0∼8.0), and released phosphorus and consumed HAc concentrations were measured. When the biomass concentration was around 2.7 g-VSS/l, the observed P/C (released-P/consumed-HAc) ratios were 0.7, 1.1 and 1.2 g-P/g-C at pH=6, 7 and 8. At 4.2 g-VSS/l, the observed P/C ratios were 0.9, 1.3 and 1.2 g-P/g-C, respectively. The difference between the two experiments resulted from the endogenous phosphorus release. The same pH effect as observed for conventional anaerobic-aerobic SBR sludge, was obtained for the DPB sludge in the range of pH=6.0∼7.5. However due to precipitates formation at pH=8.0, the apparent P/C ratio was approximately 20% less than the ratio calculated from the biological released phosphorus concentration by DPB. From the results of the batch tests with activated sludge and observations on the full-scale WWTP, it was also shown that clearly denitrifying dephosphatation occurs and approximately 50% of the phosphorus removal occurs via denitrifying activities in the WWTP.


Sign in / Sign up

Export Citation Format

Share Document