Treatment of winery wastewater in a full-scale fixed bed biofilm reactor

2005 ◽  
Vol 51 (1) ◽  
pp. 71-79 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
P. Nardelli ◽  
A. Denicolo

The treatment of winery wastewater was performed at full-scale applying a two-stage fixed bed biofilm reactor (FBBR) system for the discharge in the sewerage. The results of the first year of operation at the full-scale plant are presented. Values of removed organic loads and effluent concentrations were interpreted on the basis of the COD fractionation of influent wastewater assessed through respirometric tests. The average removal efficiency of total COD was 91%. It was not possible to reach an higher efficiency because of the unbiodegradable soluble fraction of COD (about 10% of total COD on average during the whole year), that cannot be removed by biological process or settling. Due to the high empty space offered by the plastic carriers, FBBRs did not require backwashing during the seasonal operationing period of the plant (September–March). In comparison with other treatment systems the FBBR configuration allows one to ensure a simple management, to obtain high efficiency also in the case of higher fluctuations of flow and loads and to guarantee a good settleability of the sludge, without bulking problems.

2009 ◽  
Vol 59 (2) ◽  
pp. 223-231 ◽  
Author(s):  
L. M. Whang ◽  
K. H. Yang ◽  
Y. F. Yang ◽  
Y. L. Han ◽  
Y. J. Chen ◽  
...  

This study evaluated nitrification performance and microbial ecology of AOB in a full-scale biological process, powder activated carbon treatment (PACT), and a pilot-scale biological process, moving bed biofilm reactor (MBBR), treating wastewater collected from a petrochemical industry park. The petrochemical influent wastewater characteristics showed a relative low carbon to nitrogen ratio around 1 with average COD and ammonia concentrations of 310 mg/L and 325 mg-N/L, respectively. The average nitrification efficiency of the full-scale PACT process was around 11% during this study. For the pilot-scale MBBR, the average nitrification efficiency was 24% during the Run I operation mode, which provided a slightly better performance in nitrification than that of the PACT process. During the Run II operation, the pH control mode was switched from addition of NaOH to Na2CO3, leading to a significant improvement in nitrification efficiency of 51%. In addition to a dramatic change in nitrification performance, the microbial ecology of AOB, monitored with the terminal restriction fragment length polymorphism (T-RFLP) molecular methodology, was found to be different between Runs I and II. The amoA-based TRFLP results indicated that Nitrosomonas europaea lineage was the dominant AOB population during Run I operation, while Nitrosospira—like AOB was dominant during Run II operation. To confirm the effects of Na2CO3 addition on the nitrification performance and AOB microbial ecology observed in the MBBR process, batch experiments were conducted. The results suggest that addition of Na2CO3 as a pH control strategy can improve nitrification performance and also influence AOB microbial ecology as well. Although the exact mechanisms are not clear at this time, the results showing the effects of adding different buffering chemicals such as NaOH or Na2CO3 on AOB populations have never been demonstrated until this study.


2009 ◽  
Vol 60 (5) ◽  
pp. 1201-1207 ◽  
Author(s):  
G. Guglielmi ◽  
G. Andreottola ◽  
P. Foladori ◽  
G. Ziglio

The membrane bioreactor technology (MBR) is nowadays a suitable alternative for winery wastewater treatment, thanks to low footprint, complete suspended solids removal, high efficiency in COD abatement and quick start-up. In this paper, data from two full-scale MBRs equipped with flat-sheet membranes (plant A and plant B) are presented and discussed. COD characterisation by respirometry pointed out the high biodegradability degree of both wastewater, with a strong prevalence of the readily biodegradable fraction. An extended version of Activated Sludge Model No. 3 was used to fit the experimental OUR profiles and to assess the maximum growth rate of heterotrophic biomass on sludge samples collected at both sites; the stoichiometric yield coefficients were also calculated. Sludge filterability and dewaterability were investigated with batch tests; laboratory results confirmed the field observations. Finally, some considerations are listed, aimed at defining possible key-issues for optimal process design and operation.


1991 ◽  
Vol 24 (5) ◽  
pp. 189-196 ◽  
Author(s):  
S. B. Guo ◽  
R. Z. Chen ◽  
G. Li ◽  
H. Y. Shoichi

In 1987 Guangzhou Liede Nightsoil Treatment Plant started commissioning. The purpose of the plant is to dispose of 400 tons of nightsoi1 from city public toilets per day. In the first year of the commissioning a biological process was basically used according to the original design made by a Danish company. Practically it has been proved that the design is effective. The process can reduce BOD from 3800 mg/l to about 133 mg/l, or by approximately 96.5 percent. The performance of the sludge digester system is satisfactory. Because the primary investigation on characteristics of the nightsoil was insufficient there were some problems raised during the commissioning. So in the first year the effluent failed to achieve the desired quality. After the analysis of the plant performance some necessary reforms have been carried out. Now the effluent quality can stably meet the national discharge limits and the treatment cost decreases.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 171-175
Author(s):  
Artem Khlebnikov ◽  
Falilou Samb ◽  
Paul Péringer

p-toluenesulphonic acid degradation by Comamonas testosteroni T-2 in multi-species biofilms was studied in a fixed bed biofilm reactor. The polypropylene static mixer elements (Sulzer Chemtech Ltd., Switzerland) were used as a support matrix for biofilm formation. Biofilm respiration was estimated using the dynamic gassing-out oxygen uptake method. A strong relation between oxygen uptake and reactor degradation efficiency was observed, because p-toluenesulphonate degradation is a strictly aerobic process. This technique also allowed us to estimate the thickness of the active layer in the studied system. The mean active thickness was in order of 200 μm, which is close to maximum oxygen penetration depth in biofilms. A transient mathematical model was established to evaluate oxygen diffusitivity in non-steady-state biofilms. Based on the DO concentration profiles, the oxygen diffusion coefficient and the maximum respiration activity were calculated. The oxygen diffusion coefficient obtained (2 10−10-1.2 10−9 m2 s−1) is in good agreement with published values. The DO diffusion coefficient varied with biofilm development. This may be, most likely, due to the biofilm density changes during the experiments. The knowledge of diffusivity changes in biofilms is particularly important for removal capacity estimation and appropriate reactor design.


2017 ◽  
Vol 2017 (16) ◽  
pp. 272-284 ◽  
Author(s):  
Dwight Houweling ◽  
Jeff Peeters ◽  
Pierre Cote ◽  
Zebo Long ◽  
Nick Adams
Keyword(s):  

2008 ◽  
Vol 58 (1) ◽  
pp. 83-87 ◽  
Author(s):  
O. Modin ◽  
K. Fukushi ◽  
F. Nakajima ◽  
K. Yamamoto

Methane would potentially be an inexpensive, widely available electron donor for denitrification of wastewaters poor in organics. Currently, no methanotrophic microbe is known to denitrify. However, aerobic methane oxidation coupled to denitrification (AME-D) has been observed in several laboratory studies. In the AME-D process, aerobic methanotrophs oxidise methane and release organic metabolites and lysis products, which are used by coexisting denitrifiers as electron donors for denitrification. Due to the presence of oxygen, the denitrification efficiency in terms of methane-to-nitrate consumption is usually low. To improve this efficiency the use of a membrane biofilm reactor was investigated. The denitrification efficiency of an AME-D culture in (1) a suspended growth reactor, and (2) a membrane biofilm reactor was studied. The methane-to-nitrate consumption ratio for the suspended culture was 8.7. For the membrane-attached culture the ratio was 2.2. The results clearly indicated that the membrane-attached biofilm was superior to the suspended culture in terms of denitrification efficiency. This study showed that for practical application of the AME-D process, focus should be placed on development of a biofilm reactor.


2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


1995 ◽  
Vol 32 (8) ◽  
pp. 205-212 ◽  
Author(s):  
A. Wobus ◽  
S. Ulrich ◽  
I. Röske

Two identical fixed bed reactors containing gas-permeable tubings as carrier material were compared for the elimination of chlorophenols. Under plug flow conditions, the continuous flow operation resulted in a stratification of biomass due to concentration gradients. To achieve a homogeneous colonization, the sequencing batch mode has been applicated to one biofilm reactor (Sequencing Batch Biofilm Reactor - SBBR). Concentration gradients after filling, probably due to sorption phenomena, caused an uneven distribution of biomass in the SBBR. However, the colonization of the SBBR was more homogeneous as compared to the continuously operated reactor (CFBR). As to the elimination of a trichlorophenol (2,4,5-trichlorophenol - TCP), no significant differences between the SBBR and the CFBR were observed with regard to its sensitivity against load surges. It is to be supposed that sorption to the biofilm was included in the elimination of chlorophenols. A higher diversity of protozoan community and meiofauna is obviously to be attributed to continuous flow.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1417-1425 ◽  
Author(s):  
Sheng-Kun Chen ◽  
Chin-Kun Juaw ◽  
Sheng-Shung Cheng

Two sets of fixed-film biological processes were operated separately for nitritification of amnonium and for denitritification of nitrite associated with organic compounds. High strength amnonium wastewater (50-1000 mg NH4+-N/l) could be effectively nitritified by a draft-tube fluidized bed which was operated at an extremely high loading of 1.0 kg NH4−1-N/m3.day with 95% amnonium conversion and 60 to 95% nitrite formation. Additionally, a biofilm fixed-bed was employed to denitritify the high strength nitrite (200 to 1000 mg NO2−-N/l) associated with organic compounds of glucose, acetate and benzoic acid. Complete nitrite removal could be achieved with sufficient HRT and COD/NO2−-N ratio. The conversion ratios were estimated experimentally at 2.5 for glucose and acetate, and 2.0 g ∆COD/g ∆NO2−-N for benzoic acid. A proposed process of an aerobic nitritifying biofilm reactor combined with an anoxic denitritifying biofilm reactor in series could be employed for complete nitrogen removal.


Sign in / Sign up

Export Citation Format

Share Document