UASB treatment of liquid residues from grass bioraffination

2005 ◽  
Vol 52 (1-2) ◽  
pp. 405-411 ◽  
Author(s):  
U. Baier ◽  
P. Delavy

In 2001 the first green biorefinery started operation in Switzerland with a design load of 5,000 tons dm of grass per year and a combined output of fibres (0.4 tons per ton input), protein (160 t/t) and bioenergy (500 kWh/t). Bioenergy was produced in a 570 m3 UASB reactor which has been monitored intensively during its first year of operation. Anaerobic treatment of liquid residues with >80% degradation of organics was shown up to high f/m ratios and loading rates of 12–15 kg COD/m3 d and specific biogas production of 0.5–0.65 Nm3 of gas per kg of COD added. A mass flow analysis of solids and pellets leads to the conclusion, that due to a low sludge bed volume of only 16% of the reactor combined with a low actual organic loading of 1.5 kg COD/m3 d there was a restricted adsorption and a low degradation of substrate solids.

2001 ◽  
Vol 44 (4) ◽  
pp. 189-195 ◽  
Author(s):  
J. B. van Lier ◽  
P. N.L. Lens ◽  
L. W. Hulshoff Pol

Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is applied. Concomitant energy conservation inside the mill results in process water temperatures of 50-60°C. Thermophilic anaerobic treatment complemented with appropriate post-treatment is considered as the most cost-effective solution to meet re-use criteria of the process water and to keep its temperature. In the proposed closed-cycle, the anaerobic treatment step removes the largest fraction of the biodegradable COD and eliminates “S” as H2S from the process stream, without the use of additional chemicals. The anaerobic step is regarded as the only possible location to bleed "S" from the process water cycle. In laboratory experiments, the effect of upward liquid velocity (Vupw) and the specific gas loading rate (Vgas) on the S removal capacity of thermophilic anaerobic bio-reactors was investigated. Acidifying, sulphate reducing sludge bed reactors were fed with partly acidified synthetic paper mill wastewater and were operated at 55°C and pH 6. The reactors were operated at organic loading rates up to 50 g COD.l−1.day−1 at COD/SO42- ratios of 10. The effect of Vupw was researched by comparing the performance of a UASB reactor operated at 1.0 m.h−1 and an EGSB reactor, operated at 6.8 m.h−1. The Vupw had a strong effect on the fermentation patterns. In the UASB reactor, acidification yielded H2, acetate and propionate, leading to an accumulation of reducing equivalents. These were partly disposed of by the production of n-butyrate and n-valerate from propionate. In the EGSB reactor net acetate consumption was observed as well as high volumetric gas (CO2 and CH4) production rates. The higher gas production rates in the EGSB reactor resulted in higher S-stripping efficiencies. The effect of Vgas was further researched by comparing 2 UASB reactors which were sparged with N2 gas at a specific gas loading rate of 30 m3.m−2.day−1. In contrast to the regular UASB reactors, the gas-supplied UASB showed a more stable performance when the organic loading rates were increased. Also, the H2S stripping efficiency was 3-4 times higher in the gas-supplied UASB, reaching values of 67%. Higher values were not obtained owing to the relatively poor sulphate reduction efficiencies.


2013 ◽  
Vol 69 (2) ◽  
pp. 269-277 ◽  
Author(s):  
C. Da Ros ◽  
C. Cavinato ◽  
F. Cecchi ◽  
D. Bolzonella

In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m3d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm3biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.


2017 ◽  
Vol 76 (9) ◽  
pp. 2268-2279 ◽  
Author(s):  
Henrique Vieira de Mendonça ◽  
Jean Pierre Henry Balbaud Ometto ◽  
Marcelo Henrique Otenio ◽  
Alberto José Delgado dos Reis ◽  
Isabel Paula Ramos Marques

Abstract New data on biogas production and treatment of cattle wastewater were registered using an upflow anaerobic sludge blanket-anaerobic filter (UASB-AF) hybrid reactor under mesophilic temperature conditions (37 °C). The reactor was operated in semi-continuous mode with hydraulic retention times of 6, 5, 3 and 2 days and organic loading rates of 3.8, 4.6, 7.0 and 10.8 kg CODt m−3 d−1. Biogas volumes of 0.6–0.8 m3 m−3 d−1 (3.8–4.6 kg CODt m−3 d−1) and 1.2–1.4 m3 m−3 d−1 (7.0–10.8 kg CODt m−3 d−1), with methane concentrations between 69 and 75%, were attained. The removal of organic matter with values of 60–81% (CODt) and 51–75% (CODs) allowed methane yields of 0.155–0.183 m3 CH4 kg−1 CODt and 0.401–0.513 m3 CH4 kg−1 CODs to be obtained. Volatile solids were removed in 34 to 69%, with corresponding methane yields of 0.27 to 0.42 m3 CH4 kg−1 VSremoved. The good performance of the novel hybrid reactor was demonstrated by biogas outputs higher than reported previously in the literature, along with the quality of the gas obtained in the various experimental phases. The hybrid reactor investigated in this study presents comparative advantages, particularly in relation to conventional complete mixture units, considering economic factors such as energy consumption, reactor volume and installation area.


2013 ◽  
Vol 14 (2) ◽  
pp. 149-156 ◽  

This work focused on glycerol exploitation for biogas and hydrogen production. Anaerobic digestion of pure glycerol was studied in a continuous stirred tank reactor (CSTR), operated under mesophilic conditions (35oC) at various organic loading rates. The overall operation of the reactor showed that it could not withstand organic loading rates above 0.25 g COD L-1 d-1, where the maximum biogas (0.42 ± 0.05 L (g COD)-1) and methane (0.30 ± 0.04 L (g COD)-1) production were achieved. Fermentative hydrogen production was carried out in batch reactors under mesophilic conditions (35oC), using heat-pretreated anaerobic microbial culture as inoculum. The effects of initial concentration of glycerol and initial pH value on hydrogen production were studied. The highest yield obtained was 22.14 ± 0.46 mL H2 (g COD added)-1 for an initial pH of 6.5 and an initial glycerol concentration of 8.3 g COD L-1. The main metabolic product was 1.3 propanediol (PDO), while butyric and acetic acids as well as ethanol, at lower concentrations, were also determined.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


Author(s):  
Fei Wang ◽  
Mengfu Pei ◽  
Ling Qiu ◽  
Yiqing Yao ◽  
Congguang Zhang ◽  
...  

Poultry manure is the main source of agricultural and rural non-point source pollution, and its effective disposal through anaerobic digestion (AD) is of great significance; meanwhile, the high nitrogen content of chicken manure makes it a typical feedstock for anaerobic digestion. The performance of chicken-manure-based AD at gradient organic loading rates (OLRs) in a continuous stirred tank reactor (CSTR) was investigated herein. The whole AD process was divided into five stages according to different OLRs, and it lasted for 150 days. The results showed that the biogas yield increased with increasing OLR, which was based on the volatile solids (VS), before reaching up to 11.5 g VS/(L·d), while the methane content was kept relatively stable and maintained at approximately 60%. However, when the VS was further increased to 11.5 g VS/(L·d), the total ammonia nitrogen (TAN), pH, and alkalinity (CaCO3) rose to 2560 mg·L−1, 8.2, and 15,000 mg·L−1, respectively, while the volumetric biogas production rate (VBPR), methane content, and VS removal efficiency decreased to 0.30 L·(L·d)−1, 45%, and 40%, respectively. Therefore, the AD performance immediately deteriorated and ammonia inhibition occurred. Further analysis demonstrated that the microbial biomass yield and concentrations dropped dramatically in this period. These results indicated that the AD stayed steady when the OLR was lower than 11.5 g VS/(L·d); this also provides valuable information for improving the efficiency and stability of AD of a nitrogen-rich substrate.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 273-280 ◽  
Author(s):  
S. Kalyuzhnyi ◽  
M. Gladchenko ◽  
E. Starostina ◽  
S. Shcherbakov ◽  
B. Versprille

The UASB reactor (35°C) was quite efficient for removal of bulk COD (52–74%) from simulated (on the basis of cultivation medium from the first separation process) general effluent of baker's yeast production (the average organic loading rates varied from 8.1 to 16g COD/l/d). The aerobic-anoxic biofilter (19–23°C) can be used for removal of remaining BOD and ammonia from anaerobic effluents; however, it suffered from COD-deficiency to fulfil denitrification requirements. To balance COD/N ratio, some bypass (∼10%) of anaerobically untreated general effluent should be added to the biofilter feed. The application of iron (III)-, aluminium- or calcium-induced coagulation for post-treatment of aerobic-anoxic effluents can fulfil the limits for discharge to sewerage (even for colour mainly exerted by hardly biodegradable melanoidins), however, the required amounts of coagulants were relatively high.


2011 ◽  
Vol 64 (8) ◽  
pp. 1629-1635 ◽  
Author(s):  
M. Esparza Soto ◽  
C. Solís Morelos ◽  
J. J. Hernández Torres

The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 °C) for more than 300 days. The applied organic loading rate (OLRappl) was gradually increased from 4 to 6 and 8 kg CODsol/m3d by increasing the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent CODsol and the OLRappl. The highest removed organic loading rate (OLRrem) was reached when the UASB reactor was operated at 8 kg CODsol/m3d and it was two times higher than that obtained for an OLRappl of 4 kg CODsol/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLRappl increased, which caused an increment of the effluent CODsol. Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.


Sign in / Sign up

Export Citation Format

Share Document