Treatment of packaging board whitewater in anaerobic/aerobic biokidney

2005 ◽  
Vol 52 (10-11) ◽  
pp. 289-298 ◽  
Author(s):  
T. Alexandersson ◽  
Å. Malmqvist

Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12kg COD/m3*d on the anaerobic reactor and 6.7kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6COD/m3*d and between 10 and 16COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44kgCOD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26kgCOD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step towards such a system was to evaluate two different on-line instruments. Both had severe stability problems, which made them unsuitable as parts in a system for control of the nutrient dosage.

1994 ◽  
Vol 29 (5-6) ◽  
pp. 283-294 ◽  
Author(s):  
A. Broch-Due ◽  
R. Andersen ◽  
O. Kristoffersen

Norske Skogindustrier A.S operates Sande Paper Mill A/S, a neutral sulphite semi-chemical (NSSC) corrugating mill. The mill currently discharges 1500 m3/day of wastewater containing 36 tonnes of COD and 15 tonnes of BOD7. A pilot plant test programme to demonstrate the application of a moving bed biofilm process was initiated in 1991. The objective of the pilot plant study was to obtain high COD removal efficiency at high organic loads, i.e. 25 kg COD/m3·day. If this was possible, two unused oil tanks ( 2 × 1000 m3) at the mill could provide sufficient reactor volume for biological treatment of the mill wastewater. The process tested was the KMT Moving Bed Process. This process was developed quite recently and had not been tested for the treatment of pulp and paper wastewater. The process is based on using floating biofilm carrier elements with a large inside surface area. The pilot plant at Sande Paper Mill included two reactors in series and a settling tank. Each reactor had a volume of 0.523 m3 and both were filled with elements to about 70%. The pilot plant was operated continuously for seven months. The organic load was increased in increments from about 10 kg COD/m3·d to about 65 kg COD/m3·d on the first reactor. Results show that it is possible to achieve high removal efficiency at high organic loads. At an organic load of about 25 kg COD/m3·d on the plant (i.e. 50 kg COD/m3·d on the first reactor), COD and BOD7 reductions through the pilot plant were 70% and 96% respectively. Toxicity removal was about 98% (Microtox). Sludge production was 0.2 kg TS per kg COD removed or 0.35 kg TS/kg BOD removed. The main part of the soluble COD removal took place in the first reactor where oxygen consumption was about 3 times higher than in the second reactor. Organic load of about 60 kg COD/m3·d on the first reactor is the upper limit for efficient operation of the KMT process when treating the NSSC wastewater. No clogging was observed during the test period and the process seems to be both stable and robust.


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


1994 ◽  
Vol 29 (12) ◽  
pp. 23-29 ◽  
Author(s):  
G. Voigtländer ◽  
E.-P. Kulle

The paper presents a small sewage treatment plant (package plant) operating without additional energy. Purification of sewage is achieved in a three-step process: sedimentation tank, anaerobic reactor and wastewater pond or aerobic reactor. The efficiency of the anaerobic reactor - in contrast to the efficiency of a common septic tank - is significantly increased by using fixed biomass systems. Further degradation of sewage compounds by adhering microorganisms occurs in pond or aerobic reactor. The bed for the aerobic biomass is made of a semipermeable plastic film and arranged in order to ensure simultaneous supply of oxygen. The three pilot plants are showing different results. The main aims of research i.e. lowering of operational costs, energy supply, minimizing of maintenance expenditure and cleaning work, reliability of degradation efficiency have been achieved so far for the anaerobic reactor.


2017 ◽  
Vol 77 (3) ◽  
pp. 565-575 ◽  
Author(s):  
Zhenchao Zhang

Abstract Hydroxypropyl guar gum is considered to be a main component of oilfield fracturing wastewater (OFW). This work is intended to optimize the experimental conditions for the maximum oxidative degradation of hydroxypropyl guar gum by the coagulation and UV/H2O2/ferrioxalate complexes process. Optimal reaction conditions were proposed based on the chemical oxygen demand (COD) removal efficiency and UV_vis spectra analysis. The overall removal efficiency of COD reached 83.8% for a dilution ratio of raw wastewater of 1:2, pH of 4 and FeCl3 loading of 1,000 mg/L in the coagulation process; the dosage of H2O2 (30%,v/v) was 0.6% (v/v) and added in three steps, the n(H2O2)/n(Fe2+) was 2:1, n(Fe2+)/n(C2O42−) was 3:1 and pH was 4 in the UV/H2O2/ferrioxalate complexes process; pH was adjusted to 8.5–9 by NaOH and then cationic polyacrylamide (CPAM) of 2 mg/L was added in the neutralization and flocculation process. The decrease in COD during the coagulation process reduced the required H2O2 dosage and improved efficiency in the subsequent UV/H2O2/ferrioxalate complexes process. Furthermore, COD removal efficiency significantly increased by more than 13.4% with the introduction of oxalate compared with UV/Fenton. The UV_vis spectra analysis results indicated that the coagulation and UV/H2O2/ferrioxalate complexes process could efficiently remove the hydroxypropyl guar gum dissolved in OFW. An optimal combination of these parameters produced treated wastewater that met the GB8978-1996 Integrated Wastewater Discharge Standard level III emission standard.


1986 ◽  
Vol 18 (12) ◽  
pp. 135-141 ◽  
Author(s):  
F J. C. B. Costa ◽  
B B. M. Rocha ◽  
C. E. Viana ◽  
A. C. Toledo

An anaerobic reactor was developed to biodigest alcohol distillery wastes. A further post-treatment of the effluent reduced the level of pollution to the point of eventually discharging into streams and rivers. The present work also analyses the use of biodigested vinasse as a source of food for fish. Very high efficiencies were obtained during primary and secondary treatment of vinasse effluent, as demonstrated by the greatly reduced organic load. The utilization of the treated effluent as a source of fish food presents an excellent alternative for the Brazilian alcohol industry.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1772
Author(s):  
Marcin Zieliński ◽  
Marcin Dębowski ◽  
Joanna Kazimierowicz

Whey is a primary by-product of dairy plants, and one that is often difficult to manage. As whey processing units are costly and complicated, only 15–20% of whey is recycled for use in the food industry. The difficulties in managing waste whey are particularly pronounced for small, local dairy plants. One possible solution to this problem is to use advanced and efficient digesters. The aim of this study was to present an innovative multi-section hybrid anaerobic bioreactor (M-SHAR) design and to identify how microwave radiation heating (MRH) affects methane fermentation of liquid dairy waste (LDW) primarily composed of acid whey. The MRH reactor was found to perform better in terms of COD removal and biogas production compared with the convection-heated reactor. The heating method had a significant differentiating effect at higher organic load rates (OLRs). With OLRs ranging from 15 to 25 kgCOD∙m−3∙d−1, the M-SHAR with MRH ensured a 5% higher COD removal efficiency and 12–20% higher biogas yields.


2012 ◽  
Vol 65 (11) ◽  
pp. 1954-1962 ◽  
Author(s):  
E. Desmidt ◽  
K. Ghyselbrecht ◽  
A. Monballiu ◽  
W. Verstraete ◽  
B. D. Meesschaert

The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys® technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L−1 PO4-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg2+, PO4-P and NH4+ during precipitation in a batch reactor, resulted in a good estimation of the effluent PO4-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L−1 PO4-P) was calculated as 3.9 € kg−1 Premoved. This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys® technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.


2006 ◽  
Vol 53 (4-5) ◽  
pp. 125-132 ◽  
Author(s):  
Darko Vrečko ◽  
Nadja Hvala ◽  
Aljaž Stare ◽  
Olga Burica ◽  
Marjeta Stražar ◽  
...  

In the paper three linear aeration controllers that can be easily implemented are presented and evaluated on the activated sludge process pilot plant. Controllers differ according to the information that is used about the process, which can be oxygen in the last aerobic reactor, ammonia in the last aerobic reactor and ammonia in the influent. The aeration controllers that are addressed are: oxygen cascade PI controller, ammonia cascade PI controller and ammonia feedforward-cascade PI controller. Experiments show that, in comparison with the oxygen cascade PI controller, the ammonia cascade PI controller allows better control of effluent ammonia and airflow savings of around 23%, while the ammonia feedforward-cascade PI controller gives the best reduction of ammonia peaks and can save up to 45% of the airflow.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 391-396 ◽  
Author(s):  
F.J. Almendariz ◽  
M. Meraz ◽  
A.D. Olmos ◽  
O. Monroy

Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SWCO2) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L−1 of phenol, p-cresol and o-cresol, respectively. The mixture was treated anaerobically in an EGSB reactor fed with 1.5 gCOD L−1 d−1, without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L−1 d−1. The mixture SC/SWCO2 added to the phenol load, was step increased from 0.10 to 0.87 gCOD L−1 d−1 maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.


Sign in / Sign up

Export Citation Format

Share Document