Continuous and sequencing membrane bioreactors applied to food industry effluent treatment

2007 ◽  
Vol 56 (2) ◽  
pp. 71-77 ◽  
Author(s):  
J. Lobos ◽  
C. Wisniewski ◽  
M. Heran ◽  
A. Grasmick

This work focuses on the performances of two immersed membrane bioreactors used for the treatment of easily biodegradable organic matter present in food industry effluents, for the purpose of water reuse. Two reactor functioning modes (continuous and sequencing) were compared in terms of organic carbon removal and of membrane permeability. For each working mode, pollutant removal was very high, treated water quality presented a low COD concentration (<125 mg.L−1), no solids in suspension and low turbidity (<0.5 NTU). The quality of the treated water (including germ removal) enabled its reuse on site. Moreover, by developing high biomass concentrations in the reactor, excess sludge production remained very low (<0.1 gVSS.gCOD−1). The performances appeared slightly better for the continuous system (lower COD concentration in the effluent, <50 mg.L−1, and lower sludge production). In terms of filtration, a distinct difference was observed between continuous and sequencing systems; transmembrane pressure showed a small and constant evolution rate in continuous membrane bioreactor (CMBR) although it appeared more difficult to control in sequencing membrane bioreactor (SMBR) probably due to punctually higher permeate flow rate and modified suspension properties. The rapid evolution of membrane permeability observed in SMBR was such that more frequent chemical cleaning of the membrane system was required.

2012 ◽  
Vol 2 (2) ◽  
pp. 67-73 ◽  
Author(s):  
T. Trinh ◽  
B. van den Akker ◽  
H. M. Coleman ◽  
R. M. Stuetz ◽  
P. Le-Clech ◽  
...  

Submerged membrane bioreactors (MBRs) have attracted a significant amount of interest for decentralised treatment systems due to their small footprint and ability to produce high quality effluent, which is favourable for water reuse applications. This study provides a comprehensive overview of the capacity of a full-scale decentralised MBR to eliminate 17 endocrine disrupting chemicals (EDCs) and five indigenous microbial indicators. The results show that the MBR consistently achieved high removal of EDCs (>86.5%). Only 2 of the 17 EDCs were detected in the MBR permeate, namely two-phenylphenol and 4-tert-octylphenol. Measured log10 reduction values of vegetative bacterial indicators were in the range of 5–5.3 log10 units, and for clostridia, they were marginally lower at 4.6 log10 units. Removal of bacteriophage was in excess of 4.9 log10 units. This research shows that MBRs are a promising technology for decentralised water reuse applications.


2011 ◽  
Vol 63 (1) ◽  
pp. 66-71 ◽  
Author(s):  
S. Beier ◽  
C. Cramer ◽  
S. Köster ◽  
C. Mauer ◽  
L. Palmowski ◽  
...  

Membrane Bioreactors (MBR) are a very attractive option for the treatment of hospital wastewater and elimination of pharmaceuticals in high density urban areas. The present investigation showed that, depending on the substance, between 19% and 94% of the level of antibiotics found in the environment originate from hospitals. Because of their ecotoxic potential, hospital wastewaters can have a significant impact on the environment. The segregation of these wastewaters and their separate treatment at the source can reduce the entry of drugs in waterways and enable water reuse after adequate polishing treatment processes.


2019 ◽  
pp. 297-316
Author(s):  
Mihir Kumar Purkait ◽  
Piyal Mondal ◽  
Chang-Tang Chang

Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 104 ◽  
Author(s):  
Simon Judd ◽  
Albert Odai ◽  
Pompilia Buzatu ◽  
Hazim Qiblawey

The impact of the application of mechanically-imposed shear on the propensity for fouling and clogging (or “sludging”—the agglomeration of sludge solids in the membrane channel) of an immersed flat sheet (iFS) membrane bioreactor (MBR) was studied. The bench-scale test cell used contained a single flat sheet fitted with a crank and motor to allow the membrane to be oscillated (or reciprocated) vertically at a low rate (20 RPM). The membrane was challenged with sludge samples from a local MBR installation treating petroleum industry effluent, the sludge having previously been demonstrated as having a high sludging propensity. Sludging was measured by direct visual observation of membrane surface occlusion by the agglomerated solids, with fouling being notionally represented by the rate of transmembrane pressure increase. Results demonstrated membrane reciprocation to have a more beneficial impact on sludging amelioration than on suppressing fouling. Compared with the stationary membrane, sludging was reduced by an average of 45% compared with only 13% for fouling suppression at the reference flux of 15 L·m−2·h−1 applied. The specific energy demand of the mechanical shear application was calculated as being around 0.0081 kWh·m−3, significantly lower than values reported from a recent pilot scale study on a reciprocated immersed hollow fibre MBR. Whilst results appear promising in terms of energy efficiency, it is likely that the mechanical complexity of applying membrane movement would limit the practical application to low flows, and a correspondingly small number of membrane modules.


2014 ◽  
Vol 69 (7) ◽  
pp. 1581-1588 ◽  
Author(s):  
J. B. Giménez ◽  
N. Martí ◽  
A. Robles ◽  
J. Ferrer ◽  
A. Seco

The objective of this study was to evaluate the effect of seasonal temperature variations on the anaerobic treatment of urban wastewater in membrane bioreactors (MBRs). To this aim, sludge production, energy recovery potential, chemical oxygen demand (COD) removal and membrane permeability were evaluated in a submerged anaerobic MBR fitted with industrial-scale membrane units. The plant was operated for 172 days, between summer and winter seasons. Sludge production increased and energy recovery potential decreased when temperature decreased. COD removal and membrane permeability remained nearby stable throughout the whole experimental period.


Author(s):  
Watsa Khongnakorn ◽  
Christelle Wisniewski

In wastewater treatment, the membrane bioreactor (MBR) holds the potential to become one of the new generation processes, ensuring effluent quality and disinfection of sufficiently high levels to allow water reuse and recycle. Furthermore, the possibility to operate with high biomass concentrations (2 to 5 times higher than in conventional activated sludge process, CAS) allows to impose high solid retention times(SRT) that can be beneficial to a sludge production reduction and so to a reduction of disposal costs. These non-conventional operating conditions (high SRT) can also induce different sludge characteristics and dewatering aptitude, which are essential parameters for the optimization of the sludge post-treatment, like mechanical dewatering. The objective of this work was to study the performances of a complete sludge retention membrane bioreactor, in terms of organic removal efficiency, sludge production and sludge dewaterability. The adaptability of Activated Sludge Model 3 (ASM3) to provide good prediction results of high SRT-MBR was studied. Typical parameters adopted to describe sludge dewaterability were quantified and compared with the conventional activated sludge process (CAS).


2021 ◽  
Vol 9 ◽  
Author(s):  
Muntjeer Ali ◽  
Abdulaziz Ibrahim Almohana ◽  
Abdulrhman Fahmi Alali ◽  
Mohab Amin Kamal ◽  
Abbas Khursheed ◽  
...  

The stringency in effluent discharge and reuse standards has made it extremely expensive to discharge the effluents safely or reuse them. Therefore, existing wastewater treatment plants should be evaluated and improved or augmented. With this aim, five existing common effluent treatment plants (CETPs) in North India were evaluated, including: the State infrastructure Development Corporation Uttrakhand Limited (SIDCUL) Haridwar, which processes 4.5 Million Liters per day (MLD); the Industrial Model Township (IMT) Manesar Gurgaon, 55 MLD (comprising two streams of 25 and 30 MLD each); the Lawrence Road Industrial Area (LRIA), Delhi, 12MLD (12MLD LRIA); Mayapuri Industrial Area (MIA), Delhi, 12MLD; and the Integrated Industrial Estate (IIE) SIDCUL Pantnagar, 4.0 MLD. These plants were designed to produce treated effluent for non-potable reuse. Results showed that the integrated efficiency (IEa) of all CETPs was 10–20% larger than standard integrated efficiency (IEs), indicating the suitability of the technology, except for 12MLD at MIA CETP where the IEa was 20% lower than IEs, due to the absence of any biological unit in the process. Combined post-treatment of secondary effluent by coagulation, Ultrafiltration (UF), followed by ozonation for CETP SIDCUL Haridwar, was also conducted for its non-potable water reuse. This process was able to reduce Biochemical Oxygen Demand (BOD) by 77%, Chemical Oxygen Demand (COD) by 76%, turbidity by 96%, and Total Suspended Solids (TSS) by 100%. All these parameters confirmed the effluent standards for non-potable reuse. The color was reduced to 4.0 from 42.0 Pt-Co units by the exposure ozone concentration of 8.3 mg/L for up to 4.0 min on the treated water from SIDCUL CETP, which reduced the color by 90% and complied with reuse standards. Hence Combined post treatment by coagulation, UF followed Ozonation of secondary treated effluent could be a better option for the potable reuse of treated water in various domestic and industrial applications.


2014 ◽  
Vol 71 (3) ◽  
pp. 338-346 ◽  
Author(s):  
G. Cuevas-Rodríguez ◽  
P. Cervantes-Avilés ◽  
I. Torres-Chávez ◽  
A. Bernal-Martínez

Four membrane bioreactors (MBRs) with the same dimensions were studied for 180 days: three hybrid growth membrane bioreactors with biofilm attached in different packing media and a conventional MBR (C-MBR). The four MBRs had an identical membrane module of hollow fiber with a nominal porous diameter of 0.4 μm. The MBRs were: (1) a C-MBR; (2) a moving bed membrane bioreactor (MB-MBR), which was packed with 2 L of carrier Kaldnes-K1, presenting an exposed surface area of 678.90 m2/m3; (3) a non-submerged organic fixed bed (OFB-MBR) packed with 6.5 L of organic packing media composed of a mixture of cylindrical pieces of wood, providing an exposed surface area of 178.05 m2/m3; and (4) an inorganic fixed bed non-submerged membrane bioreactor (IFB-MBR) packed with 6 L of spherical volcanic pumice stone with an exposed surface area of 526.80 m2/m3. The four MBRs were fed at low organic loading (0.51 ± 0.19 kgCOD/m3 d). The results were recorded according to the behavior of the total resistance, transmembrane pressure (TMP), permeability, and removal percentages of the nutrients during the experimental time. The results showed that the MB-MBR presented the better performance on membrane filtration, while the higher nutrient removals were detected in the OFB-MBR and IFB-MBR.


Sign in / Sign up

Export Citation Format

Share Document