Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant

2009 ◽  
Vol 60 (3) ◽  
pp. 771-781 ◽  
Author(s):  
Y. C. Ho ◽  
I. Norli ◽  
Abbas F. M. Alkarkhi ◽  
N. Morad

The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box–Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al3 + , acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.

Author(s):  
Mahendra Chouhan ◽  
Rajesh Sharma ◽  
Kamlesh Dashora

The objective of our present study is to optimize Chitosan coated liposomes formulation by Response surface methodology using 3-factor Box-Behnken Design. Different polymers based liposomes used for delivery of stable pH dependent formulation. Chitosan has been used as a pH sensitive polymer coating to target nanoparticles specifically to tumors which have a slightly acidic pH. Closed membrane system can accommodate amphiphilic or lipophilic drugs in vesicles. The optimized batch was formulated as a liposome delivery system and evaluation was done. To evaluate the unentrapped drug Shimadzu UV-Spectrometry at 228 nm was used and absorbance was noted. Response surface graph was prepared to predict value and the optimized formulation (Chitosan coated liposomes) can be used for loading of bio-active.The values of percent drug entrapment and average vesicle size were presented and found formulation F3&F5 were optimized for further evaluating on basis of particle size and drug loading.


2017 ◽  
Vol 18 (2) ◽  
pp. 63-70 ◽  
Author(s):  
Fatin Nabilah Murad

The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers.  Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Praveen Kumar Siddalingappa Virupakshappa ◽  
Manjunatha Bukkambudhi Krishnaswamy ◽  
Gaurav Mishra ◽  
Mohammed Ameenuddin Mehkri

The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and   % removal of crude oil.


2001 ◽  
Vol 44 (10) ◽  
pp. 231-236 ◽  
Author(s):  
J. Gregory ◽  
V. Dupont

Hydrolyzing coagulants are extensively used in water and wastewater treatment, often under conditions where hydroxide precipitation is important, giving “sweep flocculation”. Pre-hydrolyzed coagulants, such as polyaluminium chloride (PACl) are also widely used and have several advantages over traditional additives, such as aluminium sulfate. Their action is usually discussed in terms of cationic species and charge neutralization. However, precipitation may also be important and this aspect has not been considered in detail. The present work has compared the action of alum and three commercial PACl products on model clay suspensions. The conventional jar test procedure has been used, along with measurements of settled floc volume and dynamic monitoring of floc formation and break-up by an optical technique. The latter method gives very useful information on the nature of the flocs produced and their response to different shear conditions. It is clear from the results that the PACl products form larger and stronger flocs than alum. With all coagulants floc breakage appears to be essentially irreversible. Sediment volumes are slightly lower for flocs produced by PACl than by alum, but the value is proportional to the dosage in all cases.


2011 ◽  
Vol 197-198 ◽  
pp. 140-146
Author(s):  
Jia You Li ◽  
Xiao Mei Ye ◽  
Jian Xing Yu ◽  
Li Ling Cai ◽  
Shan Ming Ruan ◽  
...  

In this study, Box-Behnken design (BBD) and response surface analysis (RSA) methodology were employed to plan experiments and optimize the NaOH pretreatment of rice straw. Experimental results showed that concentration of NaOH (CS), treatment time (TT) and ratio of rice straw with NaOH (RS) were main factors governing the biogasification of rice straw. The polynomial equation describing the biogasification as a simultaneous function of the CS, TT and RS was confirmed. The FTIR analysis and SEM images of straws further confirmed that NaOH could disrupt the silicified waxy surface, break down the lignin-hemicellulose complex and partially remove silicon and lignin from the pretreated rice straw.


Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
M. S. Patil ◽  
Jose Mathew ◽  
P. K. Rajendrakumar ◽  
Sumit Karade

The presence of defect in the bearing (outer race, inner race, or ball) results in increased vibrations. Time domain indices such as rms, crest factor, and kurtosis are some of the important parameters used to monitor the condition of the bearing. Radial load and operating speed also have an important role in bearing vibrations. The interaction between the defect size, load, and speed helps to study their effect on vibrations more effectively. Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and the outputs of a physical system. But so far, the literature related to its application in bearing damage identification is scarce. The proposed study uses RSM to study the influence of defect size, load, and speed on the bearing vibrations. Kurtosis is used as response factor. Experiments are planned using Box Behnken design procedure. Experiments are performed using 6305 ball bearings and the results have been presented. MINITAB statistical software is used for analysis. It is seen from the analysis of the experimental results that the defect size, interaction effect of defect size and load, and interaction effect of defect size and speed are significant. Response surface method using Box Behnken design and analysis of variance has proved to be a successful technique to assess the significant factors related to bearing vibrations.


2021 ◽  
Vol 9 (01) ◽  
pp. 512-524
Author(s):  
Konan Lopez Kouame ◽  
◽  
Nogbou Emmanuel Assidjo ◽  
Andre Kone Ariban ◽  
◽  
...  

This article presents an optimization of the drinking water treatment process at the SUCRIVOIRE treatment station. The objective is to optimize the coagulation and flocculation process (fundamental process of the treatment of said plant)by determining the optimal dosages of the products injected and then proposes a program for calculating the optimal dose of coagulant in order to automatically determine the optimal dose of the latter according to the raw water quality. This contribution has the advantage of saving the user from any calculations the latter simply enters the characteristics of the raw effluent using the physical interface of the program in order to obtain the optimum corresponding coagulant concentration. For the determination of the optimal coagulant doses, we performed Jar-Test flocculation tests in the laboratory over a period of three months. The results made it possible to set up a polynomial regression model of the optimal dose of alumina sulfate as a function of the raw water parameters. A program for calculating the optimal dose of coagulant was carried out on Visual Basic. The optimal doses of coagulant obtained vary from 25, 35, 40 and 45 mg/l depending on the characteristics of the raw effluent. The model obtained is: . Finally, verification tests were carried out using this model on the process. The results obtained meet the WHO drinkability standards for all parameters for a settling time of two hours.


Sign in / Sign up

Export Citation Format

Share Document