Advanced anaerobic processes to enhance waste activated sludge stabilization

2014 ◽  
Vol 69 (8) ◽  
pp. 1728-1734 ◽  
Author(s):  
C. M. Braguglia ◽  
N. Carozza ◽  
M. C. Gagliano ◽  
A. Gallipoli ◽  
A. Gianico ◽  
...  

The requirement for enhanced stabilization processes to obtain a more stable, pathogen-free sludge for agricultural use is an increasing challenge to comply with in the waste hierarchy. With this in mind, the Routes European project (‘Novel processing routes for effective sewage sludge management’) is addressed to assess innovative solutions with the aim of maximizing sludge quality and biological stability. In order to increase anaerobic stabilization performances, the sequential anerobic/aerobic process and the thermophilic digestion process, with or without integration of the thermal hydrolysis pre-treatment, were investigated as regards the effect on sludge stabilization, dewaterability and digestion performances. Thermal pre-treatment improved anaerobic digestion in terms of volatile solids reduction and biogas production, but digestate dewaterability worsened. Fluorescence in situ hybridization (FISH) quantification showed an increase of methanogens consistent with the increase of biogas produced. The aerobic post-treatment after mesophilic digestion had a beneficial effect on dewaterability and stability of the digested sludge even if was with a reduction of the potential energy recovery.

2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6059
Author(s):  
Adrian Gonzalez ◽  
Hongxiao Guo ◽  
Oscar Ortega-Ibáñez ◽  
Coert Petri ◽  
Jules B. van Lier ◽  
...  

Sludge pre-treatments are emerging as part of the disposal process of solid by-products of wastewater purification. One of their benefits is the increase in methane production rate and/or yield, along with higher loading capacities of existing digesters. In this study, we report the performance of a pilot-scale compartmentalized digester (volume of 18.6 m3) that utilized a mild thermal pre-treatment at 70 °C coupled with hydrogen peroxide dosing. Compared with a reference conventional anaerobic digester, this technique allowed an increased organic loading rate from 1.4 to 4.2 kg volatile solids (VS)/(m3d) and an increment in the solids degradation from 40 to 44%. To some extent, these improvements were promoted by the solubilization of the tightly-bound fraction of the extracellular polymeric substances to looser and more accessible fractions without the formation of refractory compounds. In sum, our results suggest that this pre-treatment method could increase the treatment capacity of existing digesters without significant retrofitting.


2019 ◽  
Vol 287 ◽  
pp. 121470 ◽  
Author(s):  
Dong-Min Yin ◽  
Wei Qiao ◽  
Camilla Negri ◽  
Fabrizio Adani ◽  
Run Fan ◽  
...  

2015 ◽  
Vol 22 (4) ◽  
pp. 645-658 ◽  
Author(s):  
Alicja Machnicka ◽  
Klaudiusz Grübel ◽  
Kryspin Mirota

AbstractHydrodynamic cavitation caused by the Venturi effect is one of the most promising methods of sewage sludge pre-treatment. This study has been carried out to investigate the effect of hydrodynamic cavitation on disintegration of activated sludge foam and mesophilic fermentation. Cavitation was generated in standard Venturi tube with the diameter ratioβ=d0/d1= 0.30, working atσ= 0.249. Detailed Computational Fluid Design (CFD) analysis in class ofk-∈model of internal flow has been presented. Obtained analytical investigation results confirmed the effect of strong disruption of microorganism cells and release of free organic substance into the liquid phase. After a short (30 minutes) pre-treatment, chemical oxygen demand increased by 8.63 times while Müller’s disintegration degree was 50%. Moreover, undertaken mesophilic digestion trials brought significant improvement in biogas production.


2008 ◽  
Vol 58 (9) ◽  
pp. 1857-1863 ◽  
Author(s):  
M. Seppälä ◽  
T. Paavola ◽  
A. Lehtomäki ◽  
O. Pakarinen ◽  
J. Rintala

The objective of this research was to evaluate the biogas production from crops in boreal conditions, focusing on the optimal pre-treatment and storage methods, co-digestion and energy balance of farm-scale crop based biogas plants. Alkaline treatments offered some potential for improving the methane yield from grass and sugar beet tops. The results show that the CH4 yield of energy crops can be maintained by appropriate ensiling conditions for even after 11 months in ambient conditions. The CH4 yield was best preserved with wet grass mixture without additives. Co-digestion of manure and crops was shown to be feasible with feedstock volatile solids (VS) containing up to 40% of crops. The highest specific methane yields of 268, 229 and 213 l CH4 kg−1 VSadded in co-digestion of cow manure with grass, sugar beet tops and straw, respectively, were obtained during feeding with 30% of crop in the feedstock, corresponding to 85–105% of the total methane potential in the substrates as determined by batch assays. The energy output:input ratio of farm-scale grass silage based biogas plant varied significantly (3.5–8.2) with different assumptions and system boundaries being lowest when using only inorganic fertilizers and highest when half of the heat demand of the system could be covered by metabolic heat.


2016 ◽  
Vol 36 (01) ◽  
pp. 79
Author(s):  
Darwin Darwin ◽  
Yusmanizar Yusmanizar ◽  
Muhammad Ilham ◽  
Afrizal Fazil ◽  
Satria Purwanto ◽  
...  

Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC). Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL). Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL) compared with corn stover that was not pre-treated (405 mL). This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover.Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas ABSTRAKThermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan mikroorganisme anaerobik untuk mengkonversi polimer yang berupa selulosa dan hemiselulosa menjadi biogas. Tujuan dari penelitian ini adalah untuk melakukan kajian mengenai penerapan thermal pre-treatment pada limbah tanaman jagung terhadap proses anaerobik digesi yang meliputi efisiensi proses digesi dan produksi biogas yang dihasilkan. Penelitian ini dilakukan dengan menggunakan reaktor tipe batch yang suhunya dipertahankan pada kondisi mesophilic atau di atas rata-rata suhu kamar (33 ± 2 oC). Hasil penelitian diperoleh bahwa thermal pre-treatment yang diberikan pada limbah tanaman jagung mampu mempercepat proses produksi biogas pada 10 hari pertama sehingga dapat mengurangi lag-phase pada proses anaerobik digesi. Limbah tanaman jagung yang diberikan thermal pre-treatment mengalami perlambatan produksi biogas pada hari ke 26 dengan rata-rata total produksi 12.412,5 mL untuk limbah tanaman jagung yang diberikan thermal pre- treatment selama 15 menit, dan 12.310 mL untuk limbah tanaman jagung yang diberikan thermal pre-treatment selama 25 menit, sedangkan limbah tanaman jagung yang tidak diberikan pre-treatment menghasilkan produksi biogas sebesar 12.557 mL pada hari ke 26. Produksi biogas harian tertinggi terjadi pada substrat yang diberikan thermal pre-treatment 25 menit, dengan produksi biogas tertinggi pada hari ke 9 dengan rata-rata produksi sebesar 915 mL. Substrat yang diberikan thermal pre-treatment 15 menit juga memproduksi biogas jauh lebih tinggi (772,5 mL) pada hari ke 9 jika dibandingkan dengan substrat tanpa diberikan pre-treatment yang hanya memproduksi biogas sebesar 405 mL. Data hasil penelitian menunjukkan bahwa limbah tanaman jagung yang diberikan thermal pre-treatment memperoleh biogas yield lebih tinggi dari pada yang tidak diberikan pre-treatment dimana 670,39 mL/g volatile solids untuk thermal pre- treatment 15 menit, 690,65 mL/g volatile solids untuk thermal pre-treatment 25 menit dan 456,37 mL/g volatile solids untuk limbah tanaman jagung yang tidak diberikan pre-treatment.Kata kunci: Thermal pre-treatment, limbah tanaman jagung, anaerobik digesi, biogas


2014 ◽  
Vol 69 (11) ◽  
pp. 2350-2356 ◽  
Author(s):  
N. M. Hai ◽  
S. Sakamoto ◽  
V. C. Le ◽  
H. S. Kim ◽  
R. Goel ◽  
...  

Activated Sludge Models (ASMs) assume an unbiodegradable organic particulate fraction in the activated sludge, which is derived from the decay of active microorganisms in the sludge and/or introduced from wastewater. In this study, a seasonal change of such activated sludge constituents in a municipal wastewater treatment plant was monitored for 1.5 years. The chemical oxygen demand ratio of the unbiodegradable particulates to the sludge showed a sinusoidal pattern ranging from 40 to 65% along with the change of water temperature in the plant that affected the decay rate. The biogas production in a laboratory-scale anaerobic digestion (AD) process was also affected by the unbiodegradable fraction in the activated sludge fed. Based on the results a chemical pre-treatment using H2O2 was conducted on the digestate to convert the unbiodegradable fraction to a biodegradable one. Once the pre-treated digestate was returned to the digester, the methane conversion increased up to 80% which was about 2.4 times as much as that of the conventional AD process, whilst 96% of volatile solids in the activated sludge was digested. From the experiment, the additional route of the organic conversion processes for the inert fraction at the pre-treatment stage was modelled on the ASM platform with reasonable simulation accuracy.


2021 ◽  
pp. 100716
Author(s):  
Deisi Cristina Tápparo ◽  
Daniela Cândido ◽  
Ricardo Luis Radis Steinmetz ◽  
Christian Etzkorn ◽  
André Cestonaro do Amaral ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


Sign in / Sign up

Export Citation Format

Share Document