Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: a case of the Ten Great Gullies Basin

2015 ◽  
Vol 71 (12) ◽  
pp. 1893-1900 ◽  
Author(s):  
Tong Liu ◽  
He Qing Huang ◽  
Mingan Shao ◽  
Wenyi Yao ◽  
Jing Gu ◽  
...  

Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann–Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997–1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990–2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.

2013 ◽  
Vol 4 (3) ◽  
pp. 252-264 ◽  
Author(s):  
G. Q. Wang ◽  
X. L. Yan ◽  
J. Y. Zhang ◽  
C. S. Liu ◽  
J. L. Jin ◽  
...  

Evolution trends as well as abrupt changes in recorded runoffs from the major rivers in China during 1950–2010 were investigated using the Mann–Kendall test and ordered clustering analysis. Results show that the recorded runoff series at ten key hydrometric stations on the major rivers in China are characterized by a general decreasing trend. A significant decrease has occurred at six stations: Yichang, Huayuankou, Guantai, Shixiali, Tieling and Haerbin stations, which are located on the northern major rivers. Abrupt changes in runoff series are detectable for the Yellow River (1986), the Hai River (1965 at Guantai station, 1970 at Shixiali station) and the Liao River (1965). The relationship between runoff and precipitation at these stations is different before and after the abrupt change. Intensive human activities, such as land use change, water conservation projects, water diversion projects and rapid increases in agricultural irrigation, are likely to be among the main causes of the abrupt changes in runoff. Effective strategies for water conservation and adaptation to climate change will be needed to ensure sustainable use of water resources and safeguard economic growth under China's 12th 5-year plan.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Haifang Yao ◽  
Changxing Shi ◽  
Wenwei Shao ◽  
Jianbin Bai ◽  
Hui Yang

Using data of temperature, wind, precipitation, water discharge, and sediment load, the changes in runoff and sediment load of the Xiliugou basin in the upper Yellow River were investigated and the contributions of climate change and human activities to these changes were quantitatively estimated. Results show that the runoff and sediment load of the stream declined gradually in 1960–2012. According to the abrupt change point detected, the runoff and sediment series were divided into two periods: 1960–1998 and 1999–2012. The reductions of runoff and sediment load in 1999–2012 were found to be related to climate change and human activities, and the latter played a dominant role with a contribution of about 68% and 75%, respectively. The effects of rainfall intensity should be considered to avoid overestimating or underestimating the contributions of rainfall changes to the variations of runoff and sediment load in the semiarid region. An inspection of changes in water discharge and sediment regime indicated that the frequency of discharge between 0 and 5 m3/s increased while that between 5 and 1000 m3/s decreased in 2006–2012. This phenomenon can be attributed principally to the soil and water conservation practices.


2010 ◽  
Vol 7 (5) ◽  
pp. 6793-6822 ◽  
Author(s):  
P. Gao ◽  
X.-M. Mu ◽  
F. Wang ◽  
R. Li

Abstract. The objectives of this work are: (a) to statistically test and quantify the decreasing trends of streamflow and sediment discharge in the middle reaches of the Yellow River in China during 1950–2008, (b) to identify change points or transition years of the decreasing trends, and (c) to diagnose whether the decreasing trends were caused by precipitation changes or human intervention, or both. The results show that significant decreasing trends in annual streamflow and sediment discharge have existed since the late 1950s in the middle reaches of the Yellow River (P=0.01). Change-point analyses further revealed that transition years existed and that abrupt decline in streamflow and sediment discharge began in 1985 and 1981, respectively, in the middle reaches of the Yellow River (P=0.05). Adoption of conservation measures in the 1980s and 1990s corroborates the identified transition years. Double-mass curves of precipitation vs. streamflow (sediment) for the periods before and after the transition year show remarkable decreases in proportionality of streamflow (sediment) generation. Compared with the period before the transition year, cumulative streamflow and cumulative sediment discharge reduced respectively by 17.8% and 28% during 1985–2008, which was caused by human intervention, in the middle reaches of the Yellow River. It is, therefore, concluded that human activities occupied a dominant position and played a major role in the streamflow and sediment discharge reduction in the middle reaches of the Yellow River.


2014 ◽  
Vol 41 (3) ◽  
pp. 252-260 ◽  
Author(s):  
Bu-Li Cui ◽  
Xue-Li Chang ◽  
Wei-Yu Shi

2019 ◽  
Vol 568 ◽  
pp. 46-56 ◽  
Author(s):  
Shimin Tian ◽  
Mengzhen Xu ◽  
Enhui Jiang ◽  
Guanghui Wang ◽  
Hongchang Hu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Peng Tian ◽  
Xingmin Mu ◽  
Jianli Liu ◽  
Jinfei Hu ◽  
Chaojun Gu

The objectives of this study are to investigate the changes of runoff and sediment load and their potential influencing factors in the Huangfuchuan catchment. The Mann-Kendall test and accumulative anomaly methods were, respectively, applied to examine the changing trends and abrupt changes. Both annual runoff and sediment load demonstrated significant reduction (p<0.05) with decreasing rates of −3.2 × 106 m3/a and −1.09 Mt/a, respectively. The abrupt changes were detected in 1979 and 1996 for the runoff and sediment load. All the runoff and sediment indices (runoff, sediment load, runoff coefficient, and sediment concentration) exhibited remarkable reduction (p<0.01). The climate variability contributed 24.4% and 25.1% during 1980–1996 and 1997–2010 to annual runoff decrease, respectively, and human activities accounted for the remaining 75.6% and 74.9%. In contrast, changes in precipitation accounted for 43.5% and 20.2% of sediment load reduction during 1980–1996 and 1997–2010, whereas the human activities contributed 56.5% and 79.8%, respectively. The relative contributions from climate variability and human activities to runoff and sediment load changes at annual scale were different from that at flood season scale. Results suggested the dominant role of soil and water conservations in the variation of runoff and sediment load in the catchment.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 845
Author(s):  
Xiaoqing Ma ◽  
Changxing Shi ◽  
Jia Peng ◽  
Wei Liu

River sediment load has been changing conspicuously worldwide. The famous sediment-laden Yellow River in China has also had a declining sediment load in the past decades. This study made a quantitative ascription of the sediment discharge changes by non-parametric Pettitt test, rainfall and sediment discharge characteristic index calculation, correlation test, double cumulative curve regression and solving differential equation in the Huangfu and the Kuye basins in the main sediment sources of the Yellow River. The results indicated that: (1) The sediment discharge decreased significantly from 1956 to 2016, while the rainfall and rainfall erosivity only had a visible but insignificant decreasing trend. (2) Rainfall erosivity is better than other rainfall characteristic indexes in relation with sediment discharge. (3) The anthropogenic factor was the main driver for the reduction of sediment discharge with a percentage of 70.2–90.5% in different periods. The contribution of rainfall changes in flood season to sediment discharge reduction surpassed that in the whole year. (4) A percentage of 88% and 93% of suspended sediment yield reduction was attributed to streamflow reduction, and 12% and 7% to changes in C-Q relationship in the Huangfu and the Kuye basins, respectively.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 622 ◽  
Author(s):  
Xing Mu ◽  
Hao Wang ◽  
Yong Zhao ◽  
Huan Liu ◽  
Guohua He ◽  
...  

Streamflow is likely affected by climate change and human activities. In this study, hydro-meteorological data from six rivers upstream of Beijing, namely, the Yongdinghe, Baihe, Heihe, Chaohe, Juhe, and Jumahe Rivers, were analyzed to quantify the spatial and temporal variability of streamflow and their responses to climate change and human activities over the period of 1956–2016. The Mann–Kendall test and moving t-test were used to detect trends and changing points of the annual streamflow. Results showed that the streamflow into Beijing experienced a statistically significant downward trend (p < 0.05), abruptly changing after the early 1980s, owing to climate and human effects. The climate elasticities of the streamflow showed that a 10% decrease in precipitation would result in a 24.5% decrease in total streamflow, whereas a 10% decrease in potential evapotranspiration would induce a 37.7% increase in total streamflow. Human activities accounted for 87% of the reduction in total streamflow, whereas 13% was attributed to climate change. Lastly, recommendations are provided for adaptive management of water resources at different spatial scales.


CATENA ◽  
2016 ◽  
Vol 142 ◽  
pp. 1-10 ◽  
Author(s):  
Haifang Yao ◽  
Changxing Shi ◽  
Wenwei Shao ◽  
Jianbin Bai ◽  
Hui Yang

2012 ◽  
Vol 16 (9) ◽  
pp. 3219-3231 ◽  
Author(s):  
Z. L. Gao ◽  
Y. L. Fu ◽  
Y. H. Li ◽  
J. X. Liu ◽  
N. Chen ◽  
...  

Abstract. To control severe soil erosion on the Loess Plateau, China, a great number of soil conservation measures have been implemented since 1950s and subsequently, the "Grain for Green" project was implemented in 1999. The measures and the project resulted in a large scale land use/cover change (LUCC). Understanding the impacts of the measures and the project on streamflow, sediment load and their dynamic relation is essential because the three elements are closely related to the sustainable catchment management strategy on the Loess Plateau. The data for seven selected catchments in the middle reaches of the Yellow River were used and standardized with the precipitation and the controlling area for analysis. The nonparametric Mann-Kendall test and the Pettitt test were employed to detect trends and change points of the annual streamflow and annual sediment load. Simple linear regressions for the monthly streamflow and sediment load from May to October were made to express their relationship. Based on the change point identification and the time when the project began to be implemented on the Loess Plateau, the complete time for the data records was divided into three periods to compare the change degrees of streamflow, sediment load and their relation for the catchments. Results show that there are three types of responses in streamflow, sediment load, and their dynamic relations for the seven catchments. The effects of the LUCC on streamflow, sediment load, and their relationships are greatest in the three transition zone catchments followed by the two rocky mountain catchments. The effects are much weaker in the two loess hilly-gully catchments. In general, the change degrees for sediment load are much greater than those for streamflow, which results from the decreased streamflow and weakening trend of their dynamic relation period by period in catchments.


Sign in / Sign up

Export Citation Format

Share Document