Long-term effects of engineered nanoparticles on enzyme activity and functional bacteria in wastewater treatment plants

2015 ◽  
Vol 72 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Xiong Zheng ◽  
Haining Huang ◽  
Yinglong Su ◽  
Yuanyuan Wei ◽  
Yinguang Chen

Abstract The pervasive use of engineered nanoparticles (NPs) in a wide range of fields raises concerns about their potential environmental impacts. Previous studies confirmed that some NPs had already entered wastewater treatment plants (WWTPs). Wastewater nutrient removal depends on the metabolisms of activated sludge bacteria and their related key enzymes. Therefore, this study compared the possible influences of Al2O3, SiO2, TiO2, and ZnO NPs on the key enzymes activities and microbial community structures involved in wastewater treatment facilities. It was found that long-term exposure to these NPs significantly affected the microbial communities and changed the relative abundances of key functional bacteria, such as ammonia-oxidizing bacteria. Also, the gene expressions and catalytic activities of essential enzymes, such as ammonia monooxygenase, nitrite oxidoreductase, nitrate reductase, and nitrite reductase, were decreased, which finally resulted in a lower efficiency of biological nitrogen removal.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 436E-436
Author(s):  
Martin P.N. Gent

The persistence of effects of paclobutrazol or uniconazol on stem elongation was determined for several years after large-leaf Rhododendron and Kalmia latifolia were treated with a single-spray application of these triazol growth-regulator chemicals. Potted plants were treated in the second year from propagation, and transplanted into the field in the following spring. The elongation of stems was measured in the year of application and in the following 2 to 4 years. Treatments with a wide range of doses were applied in 1991, 1992, or 1995. For all except the most-dilute applications, stem elongation was retarded in the year following application. At the highest doses, stem growth was inhibited 2 years following application. The results could be explained by a model of growth regulator action that assumed stem elongation was inversely related to amount of growth regulator applied. The dose response coefficient for paclobutrazol was less than that for uniconazol. The dose that inhibited stem elongation one-half as much as a saturating dose was about 0.5 and 0.05 mg/plant, for paclobutrazol and uniconazol, respectively. The dose response coefficient decreased exponentially with time after application, with an exponential time constant of about 2/year. The model predicted a dose of growth regulator that inhibited 0.9 of stem elongation immediately after application would continue to inhibit 0.5 of stem elongation in the following year.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


1994 ◽  
Vol 30 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Ralf Otterpohl ◽  
Thomas Rolfs ◽  
Jörg Londong

Computer simulation of activated sludge plant for nitrogen removal has become a reliable tool to predict the behaviour of the plant Models including biological phosphorus removal still require some practical experience but they should be available soon. This will offer an even wider range than today's work with nitrogen removal. One major benefit of computer simulation of wastewater treatment plants (WTP) is the optimization of operation. This can be done offline if hydrographs of a plant are collected and computer work is done with “historical” analysis. With online simulation the system is fed with hydrographs up to the actual time. Prognosis can be done from the moment of the computer work based on usual hydrographs. The work of the authors shows how accuratly a treatment plant can be described, when many parameters are measured and available as hydrographs. A very careful description of all details of the special plant is essential, requiring a flexible simulation tool. Based on the accurate simulation a wide range of operational decisions can be evaluated. It was possible to demonstrate that the overall efficiency in nitrogen removal and energy consumption of ml activated sludge plant can be improved.


2018 ◽  
Vol 78 (6) ◽  
pp. 1304-1311 ◽  
Author(s):  
I. Mishima ◽  
M. Hama ◽  
Y. Tabata ◽  
J. Nakajima

Abstract Small-scale wastewater treatment plants (SWTPs), called Johkasou, are widely used as decentralized and individual wastewater treatment systems in sparsely populated areas in Japan. Even in SWTPs, nutrients should be removed to control eutrophication. An iron electrolysis method is effective to remove phosphorus chemically in SWTPs. However, it is necessary to determine the precise conditions under which phosphorus can be effectively and stably removed in full scale SWTPs for a long period. Therefore, long-term phosphorus removal from SWTPs was investigated and optimum operational conditions for phosphorus removal by iron electrolysis were analyzed in this study. Efficient phosphorus removal can be achieved for a long time by adjusting the amount of iron against the actual population equivalent. The change of the recirculation ratio had no negative effect on overall phosphorus removal. Phosphorus release to the bulk phase was prevented by the accumulated iron, which was supplied by iron electrolysis, resulting in stable phosphorus removal. The effect of environmental load reduction due to phosphorus removal by iron electrolysis was greater than the cost of power consumption for iron electrolysis.


2014 ◽  
Vol 69 (7) ◽  
pp. 1573-1580 ◽  
Author(s):  
L. Åmand ◽  
C. Laurell ◽  
K. Stark-Fujii ◽  
A. Thunberg ◽  
B. Carlsson

Three large wastewater treatment plants in Sweden participate in a project evaluating different types of ammonium feedback controllers in full-scale operation. The goal is to improve process monitoring, maintain effluent water quality and save energy. The paper presents the outcome of the long-term evaluation of controllers. Based on the experiences gained from the full-scale implementations, a discussion is provided about energy assessment for the purpose of comparing control strategies. The most important conclusions are the importance of long-term experiments and the difficulty of comparing energy consumption based on air flow rate measurements.


2008 ◽  
Vol 147 (1) ◽  
pp. 31-42 ◽  
Author(s):  
H. ZHANG ◽  
M. XU ◽  
F. ZHANG

SUMMARYRice (Oryza sativaL.), wheat (Triticum aestivumL.) and maize (Zea maysL.) are the main crops grown in China. Applying organic manures is an important practice in sustaining soil fertility and agricultural productivity in these cropping systems. The current paper presents the effects of manure application on grain yields in nine long-term experiments that consist of one continuous maize, four wheat–maize and four rice-based cropping systems across a wide range of agro-ecological regions in China. The study shows that regular manure application can increase soil organic carbon (SOC) and grain yield across all the sites. Overall, regular use of manure results in larger increases in SOC in the maize and wheat–maize systems than in the rice-based systems. Application of manure tends to increase the grain yield in the maize and wheat–maize systems during the final years, but increases the grain yield in the rice-based systems during the initial years of the long-term experiments. There is only one site that shows significant improvement in the yield trend in association with the application of manure. The effects of manure on yield trends are probably determined by the initial yield and/or the ‘organic C effect’ that may cause gradual improvements in SOC and soil physical properties.


Desalination ◽  
2006 ◽  
Vol 199 (1-3) ◽  
pp. 325-327 ◽  
Author(s):  
Alfieri Pollice ◽  
Daniela Saturno ◽  
Cristina Giordano ◽  
Giuseppe Laera

2005 ◽  
Vol 71 (12) ◽  
pp. 8481-8490 ◽  
Author(s):  
Arlene K. Rowan ◽  
Russell J. Davenport ◽  
Jason R. Snape ◽  
David Fearnside ◽  
Michael R. Barer ◽  
...  

ABSTRACT A sandwich hybridization assay for high-throughput, rapid, simple, and inexpensive quantification of specific microbial populations was evaluated. The assay is based on the hybridization of a target rRNA with differentially labeled capture and detector probes. Betaproteobacterial ammonia-oxidizing bacteria (AOB) were selected as the target group for the study, since they represent a phylogenetically coherent group of organisms that perform a well-defined geochemical function in natural and engineered environments. Reagent concentrations, probe combinations, and washing, blocking, and hybridization conditions were optimized to improve signal and reduce background. The detection limits for the optimized RNA assay were equivalent to approximately 103 to 104 and 104 to 105 bacterial cells, respectively, for E. coli rRNA and RNA extracted from activated sludge, by using probes targeting the majority of bacteria. Furthermore, the RNA assay had good specificity, permitted discrimination of rRNA sequences that differed by a 2-bp mismatch in the probe target region, and could distinguish the sizes of AOB populations in nitrifying and nonnitrifying wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document