Co-digestion of press liquids of source-sorted municipal organic waste in anaerobic sludge treatment of municipal wastewater treatment plants

2016 ◽  
Vol 73 (12) ◽  
pp. 3080-3086 ◽  
Author(s):  
Johannes Effenberger ◽  
Lydia Jahn ◽  
Volker Kuehn

Abstract This paper describes a semi-continuous laboratory-scale investigation of a potential co-substrate for mesophilic anaerobic sludge digestion in a municipal wastewater treatment plant. A feed liquid produced from source-sorted municipal organic waste by pretreatment with a screw press was subjected to the investigation. Quantities produced in press trials as well as the composition of the feed liquid are presented. Mass balances for N, P and chemical oxygen demand are given in order to verify the methane production of the feed liquid in co-digestion with sewage sludge at mesophilic conditions. Hydraulic retention time of the reactors were 14.7 to 16 d and organic loading rates were 1.5 to 2.7 kg volatile solids (VS) per cubic metre per day. The pretreatment by screw press is compared to the production of feed liquids with pulper-based pretreatment processes. While the addition of the feed liquid increased methane production by about 345 ml CH4/g VSin, total solids of the feed liquid were reduced to about 63%. With respect to co-digestion at municipal wastewater treatment plants, several risks associated with the investigated feed liquid are outlined.

2018 ◽  
Vol 4 (12) ◽  
pp. 1988-1996 ◽  
Author(s):  
Yan He ◽  
Yishuang Zhu ◽  
Jinghan Chen ◽  
Minsheng Huang ◽  
Guohua Wang ◽  
...  

The tense deficiency of available land resources is becoming one of the bottlenecks in dealing with wastewater treatment plant (WWTP) management issues.


2020 ◽  
Vol 1 ◽  
Author(s):  
Kevin de Santiago ◽  
Terence A. Palmer ◽  
Michael S. Wetz ◽  
Jennifer Beseres Pollack

AbstractThe influence of nutrient loading and other anthropogenic stressors is thought to be greater in low inflow, microtidal estuaries, where there is limited water exchange. This 11-month study compared spatial changes in macrofaunal communities adjacent to regions that varied in land cover in Oso Bay, Texas, an estuarine secondary bay with inflow dominated by hypersaline discharge, in addition to discharge from multiple municipal wastewater treatment plants. Macrofauna communities changed in composition with distance away from a wastewater treatment plant in Oso Bay, with the western region of the bay containing different communities than the head and the inlet of the bay. Ostracods were numerically dominant close to the wastewater discharge point. Macrobenthic community composition is most highly correlated with silicate concentrations in the water column. Silicate is negatively correlated with salinity and dissolved oxygen, and positively correlated with nutrients within the bay. Results are relevant for environmental management purposes by demonstrating that point-source discharges can still have ecological effects in hydrologically altered estuaries.


2014 ◽  
Vol 69 (7) ◽  
pp. 1359-1372 ◽  
Author(s):  
Oskar Modin ◽  
David J. I. Gustavsson

Microbial bioelectrochemical systems (BESs) utilize living microorganisms to drive oxidation and reduction reactions at solid electrodes. BESs could potentially be used at municipal wastewater treatment plants (WWTPs) to recover the energy content of organic matter, to produce chemicals useful at the site, or to monitor and control biological treatment processes. In this paper, we review bioelectrochemical technologies that could be applied for municipal wastewater treatment. Sjölunda WWTP in Malmö, Sweden, is used as an example to illustrate how the different technologies potentially could be integrated into an existing treatment plant and the impact they could have on the plant's utilization of energy and chemicals.


1999 ◽  
Vol 40 (1) ◽  
pp. 191-198 ◽  
Author(s):  
L. Nicolet ◽  
U. Rott

The use and recirculation of powdered activated carbon (PAC) as an advanced treatment for colour removal in municipal wastewater treatment plants is presented. Studied wastewaters consist of domestic effluents with a high portion of dyehouse residual waters. The particularity of the treatment is that PAC is not disposed of before being recirculated several times. Therefore, it enables the use of a great part of the total adsorption capacity of the PAC. A positive side effect is that halogenated and refractory organic compounds, which are not degraded by micro-organisms in a conventional municipal wastewater treatment plant, are removed too. This paper describes results which were obtained in batch experiments and in a pilot plant during two years of observation, and concludes with advantages and drawbacks of this technology.


2010 ◽  
Vol 113-116 ◽  
pp. 651-654
Author(s):  
Ben Chao Jiang ◽  
Fang Ma ◽  
Li Wei ◽  
Jing Bo Guo ◽  
Ang Li

The minimum temperature in winter is under -30oC in the northern hilly regions. It is harmful for the municipal wastewater treatment in winter. According to previous reports, the effects caused by the low-temperature in municipal wastewater treatment plant are summarized, and improvements are put forward. Improving the efficiencies of municipal wastewater treatment is essential and significant in the northern hilly regions.


2004 ◽  
Vol 39 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Merv Palmer ◽  
Jack Fritz

Abstract The operating characteristics of thirteen municipal wastewater treatment plants (WWTPs) with design capacities between 50,000 and 300,000 m3/d (mean 75,000 m3/d) were studied. The treatment processes used by these plants included one biofilter (BIO); two A/O (activated sludge anaerobic and aerobic processes in sequence); four A2/O (modified A/O with anaerobic, annoxic (denitrification) and aerobic cells in sequence); three oxidation ditches (OXD); two A/B (absorption-bio-oxidation two-stage [anaerobic cell followed by aerobic cell]); and one sequencing batch reactor (SBR). The study objective was to determine whether the WWTPs were operating at design conditions, and if not, to try to identify the causes of under-performance. All the WWTPs produced a treated effluent quality which was in compliance with a few exceptions. Nine WWTPs were operating with a mean of 62% of the design hydraulic flows. Thirteen WWTPs were operating at a mean of 56% of the design five-day biochemical oxygen demand (BOD) and at 84% of the design total suspended solids (TSS) loadings. Three WWTPs received high-strength wastewater (WW) (BOD >400 mg/L), four normal-strength WW (BOD = 150 to 260 mg/L) and five received weak-strength WW (BOD <150 mg/L). WW strength appeared to be a local characteristic. The mean capital treatment plant costs for one cubic metre of WW per day was 232 USD (104 to 444 USD); consequently, between 80 and 100 MUSD capital investment in WWTPs is unused.


2021 ◽  
Author(s):  
◽  
Tolulope Adewale Kudoro

Hydropower is a source of renewable energy. It is possible to combine a hydropower installation with an existing wastewater plant while ensuring it still performs its basic purpose. The multipurpose scheme would be integrated into the facility to generate hydropower while also fulfilling its primary role of treating wastewater. The wastewater plant can generate renewable energy and benefit from introducing microturbines. The turbine system is moved by the power in the flowing treated water that is transformed into mechanical energy which rotates the generator and in turn generates electrical power. In this work, the potential for power generation from the energy in the outflow along with the economics of the system in wastewater plants in the state of Missouri was investigated to improve the energy efficiency of the municipal wastewater treatment plants. Data like the daily flow rate, speed of flow, available head, etc about the wastewater plants in Missouri were collected and some interviews held with plant managers of the wastewater treatment plants. The investigation revealed that there are 127 wastewater treatment plants in the state of Missouri with 32 plants discharging less than 1 Mgd, 74 plants discharging between 1 Mgd and 5 Mgd, 13 plants discharging between 5 Mgd and 20 Mgd while just 8 plants had an outflow between 20 Mgd and 120 Mgd range. The flowrate helps in calculating and determining the theoretical and actual amount of power that can be gotten from the micro hydropower system in the wastewater treatment plant. For the actual amount of power gotten, the efficiency factor (efficiency of the turbine, and efficiency of the generator) of the generating system is considered. A brief study on the turbine system was conducted and a crossflow turbine was selected as the most suitable for the wastewater treatment plant as a vast majority of them had low head and high flow capacity. The analysis showed that out of the 127 wastewater treatment plants in the state of Missouri, only 21 treatment plants have the maximum potential to generate power and reduce operating costs. Also, two plants were selected for case studies. The operating cost is reduced because of the decrease in demand for electrical power from the grid. The 21 treatment plants have a daily outflow between 5Mgd to 120Mgd and could produce power through an axial flow turbine that utilizes the kinetic energy in the flow volume.


2019 ◽  
Vol 81 (7) ◽  
pp. 1365-1374 ◽  
Author(s):  
Matteo Giberti ◽  
Recep Kaan Dereli ◽  
Damian Flynn ◽  
Eoin Casey

Abstract Demand response (DR) programmes encourage energy end users to adjust their consumption according to energy availability and price. Municipal wastewater treatment plants are suitable candidates for the application of such programmes. Demand shedding through aeration control, subject to maintaining the plant operational limits, could have a large impact on the plant DR potential. Decreasing the aeration intensity may promote the settling of the particulate components present in the reactor mixed liquor. The scope of this study is thus to develop a mathematical model to describe this phenomenon. For this purpose, Benchmark Simulation Model No.1 was extended by implementing a dual-layer settling model in one of the aerated tanks and combining it with biochemical reaction kinetic equations. The performance of this extended model was assessed in both steady-state and dynamic conditions, switching the aeration system off for 1 hour during each day of simulation. This model will have applications in the identification of potential benefits and issues related to DR events, as well as in the simulation of the plant operation where aerated tank settling is implemented.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1118 ◽  
Author(s):  
Dafne Crutchik ◽  
Oscar Franchi ◽  
Luis Caminos ◽  
David Jeison ◽  
Marisol Belmonte ◽  
...  

Sludge is a by-product of municipal wastewater treatment plants (WWTPs) and its management contributes significantly to the operating costs. Large WWTPs usually have anaerobic sludge digesters to valorize sludge as methane and to reduce its mass. However, the low methane market price opens the possibility for generating other high value-added products from the organic matter in sludge, such as polyhydroxyalkanoates (PHAs). In this work, the economic feasibility of retrofitting two types of WWTPs to convert them into biofactories of crude PHAs was studied. Two cases were analyzed: (a) a large WWTP with anaerobic sludge digestion; and (b) a small WWTP where sludge is only dewatered. In a two-stage PHA-production system (biomass enrichment plus PHAs accumulation), the minimum PHAs cost would be 1.26 and 2.26 US$/kg PHA-crude for the large and small WWTPs, respectively. In a single-stage process, where a fraction of the secondary sludge (25%) is directly used to accumulate PHAs, the production costs would decrease by around 15.9% (small WWTPs) and 19.0% (large WWTPs), since capital costs associated with bioreactors decrease. Sensitivity analysis showed that the PHA/COD (Chemical Oxygen Demand) yield is the most crucial parameter affecting the production costs. The energy, methane, and sludge management prices also have an essential effect on the production costs, and their effect depends on the WWTP’s size.


2020 ◽  
Vol 10 (23) ◽  
pp. 8364
Author(s):  
Rhiannon Hodgson ◽  
Leslie Bragg ◽  
Hadi A. Dhiyebi ◽  
Mark R. Servos ◽  
Paul M. Craig

The effluent from municipal wastewater treatment plants is a major point source of contamination in Canadian waterways. The improvement of effluent quality to reduce contaminants, such as pharmaceuticals and personal care products, before being released into the environment is necessary to reduce the impacts on organisms that live in the river downstream. Here, we aimed to characterize the metabolic and gill physiological responses of rainbow (Etheostoma caeruleum), fantail (Etheostoma flabellare), and greenside (Etheostoma blennioides) darters to the effluent in the Grand River from the recently upgraded Waterloo municipal wastewater treatment plant. The routine metabolism of darters was not affected by effluent exposure, but some species had increased maximum metabolic rates, leading to an increased aerobic scope. The rainbow darter aerobic scope increased by 2.2 times and the fantail darter aerobic scope increased by 2.7 times compared to the reference site. Gill samples from effluent-exposed rainbow darters and greenside darters showed evidence of more pathologies and variations in morphology. These results suggest that darters can metabolically adjust to effluent-contaminated water and may also be adapting to the urban and agricultural inputs. The modification and damage to the gills provide a useful water quality indicator but does not necessarily reflect how well acclimated the species is to the environment due to a lack of evidence of poor fish health.


Sign in / Sign up

Export Citation Format

Share Document