scholarly journals Performance of A-stage process treating combined municipal-industrial wastewater

2016 ◽  
Vol 75 (1) ◽  
pp. 228-238 ◽  
Author(s):  
Antoine Prandota Trzcinski ◽  
Chong Wang ◽  
Dongqing Zhang ◽  
Wui Seng Ang ◽  
Li Leonard Lin ◽  
...  

A biosorption column and a settling tank were operated for 6 months with combined municipal and industrial wastewaters (1 m3/hr) to study the effect of dissolved oxygen (DO) levels and Fe3+ dosage on removal efficiency of dissolved and suspended organics prior to biological treatment. High DO (>0.4 mg/L) were found to be detrimental for soluble chemical oxygen demand (COD) removals and iron dosing (up to 20 ppm) did not improve the overall performance. The system performed significantly better at high loading rate (>20 kg COD.m−3.d−1) where suspended solids and COD removals were greater than 80% and 60%, respectively. This is a significant improvement compared to the conventional primary sedimentation tank, and the process is a promising alternative for the pre-treatment of industrial wastewater.

2021 ◽  
Vol 9 (1) ◽  
pp. 3073-3081
Author(s):  
Mohamed Nabil Ali ◽  
Hanan A Fouad ◽  
Mohamed M Meky ◽  
Rehab M Elhefny

Due to the lack of freshwater resources in Egypt, cement wastewater treatment was performed to widen the range of the water used in irrigation to face the massive future water scarcity. In this study, integrated fixed-film activated sludge (IFAS) was used as a biological treatment method. A laboratory pilot was established as a simulation of the IFAS process. The scale-pilot consists of a primary sedimentation tank, an IFAS tank equipped with an air blower, and a final settling tank. Three experimental attempts were performed using 3 different bio-carriers. In the first trial, Luffa sponges were used as natural bio-carriers and polyurethane sponges (PU) as artificial bio-carriers in the second trial, in addition to a combination between Luffa and PU sponges as a hybrid bio-carrier in the third trial. After analyzing the physicochemical properties of wastewater at the national research center in Cairo, the removal efficiency of TSS (total suspended solids), COD (chemical oxygen demand) , BOD(biological oxygen demand), TN (total nitrogen), and TP (total phosphorous) was 94.5%, 87.8%, 90.8%, 75.9%, and 69.4%, respectively in case of using the combination between Luffa and PU sponges. It can be concluded that using IFAS process was effective for cement wastewater treatment and the effluent wastewater met the Egyptian code limitations for reuse in agriculture purposes.


2012 ◽  
Vol 531 ◽  
pp. 528-531 ◽  
Author(s):  
Na Wei

Anaerobic digestion is an economic and environmentally friendly technology for treating the biomass material-sewage sludge, but has some limitations, such as the low efficient biogass production. In this paper ultrasound was proposed as pre-treatment for effective sludge anaerobic digestion. Sludge anaerobic digestion experiments with ultrasonic pretreatment was investigated. It can be seen that this treatment effectively leaded to the increase of soluble chemical oxygen demand(SCOD) and volatile fatty acids(VFA)concentration. High concentration of VFA leaded to a increase in biogas production. Besides, the SV of sludge was reduced and the settling characteristics of sludge was improved after ultrasonic pretreatment. It can be concluded that sludge anaerobic digestion with ultrasonic pretreatment is an effective method for biomass material transformation.


2012 ◽  
Vol 66 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Mouhamed el khames Saad ◽  
Younes Moussaoui ◽  
Asma Zaghbani ◽  
Imen Mosrati ◽  
Elimame Elaloui ◽  
...  

The present paper presents the main results of the biodegradation study of paper industry wastewater through physico-chemical treatment. Indeed, around 60% of chemical oxygen demand (COD) removal can be achieved by electroflocculation treatment. Furthermore, a removal efficiency of the COD of almost 91% has been obtained by biological treatment, with activated amount of sludge for 24 h of culture. Concerning the physico-chemical pre-treatment of the untreated, filtered and electroflocculated rejection effluents, it has been investigated through the degradation curve of COD studies.


2018 ◽  
Vol 22 (6) ◽  
pp. 20-25 ◽  
Author(s):  
I.Yu. Shlekova ◽  
A.I. Knysh

The use of industrial wastes as alternative adsorbents for wastewater treatment is proposed. The effective concentration of the adsorbent was determined experimentally. The results of a study of the intensification of biological wastewater treatment using activated carbon and a pulverized coke fraction are presented. The efficiency of treatment in terms of "chemical oxygen demand" during the intake of highly concentrated sewage sludge with the use of an alternative adsorbent averaged 85 %. In the biosorption system, the conservation of the species diversity of the biocenosis of activated sludge and its purifying ability was noted. In the biological treatment system, purification efficiency was recorded on average 16 % less and destabilization of the system as a whole. The carried out researches prove expediency of use of adsorbents, including production wastes, for intensification of biological wastewater treatment in aero tanks.


2013 ◽  
Vol 68 (10) ◽  
pp. 2214-2219 ◽  
Author(s):  
A. C. Gomes ◽  
L. Silva ◽  
R. Simões ◽  
N. Canto ◽  
A. Albuquerque

Biodegradability enhancement and detoxification of cork boiling wastewater (CBW) are required for the successful implementation of biological treatment options. We studied the possibility of achieving these goals through ozonation pre-treatment by experimenting on the effect of ozone dose and pH. The CBW used had a pH of 5.81, a chemical oxygen demand (COD) of 1,865 mg L−1, a biochemical oxygen demand (BOD5) of 498 mg L−1 and total phenol (TP) and tannin compounds concentrations of 523 and 399 mg L−1, respectively. The ozone doses ranged from 0.27 to 2.63 for the O3(applied)/COD0 ratios with samples at natural pH and set to 3.33 and 9.96. Ozonation allowed the BOD20/COD ratio (biodegradability index) to increase from 0.37 to 0.63 and a toxicity reduction from 3.08 to 1.24 TU (Microtox). The corresponding removals obtained were 15.2–62.0%, 38.4–83.2% and 56.7–92.1% for COD, TP and colour, respectively. The best outcome of ozonation pre-treatment requires O3(applied)/COD0 ratios over 1.5 and an acid pH. The increase of TP removals with ozone dose at acid pH led to biodegradability enhancement and CBW detoxification. However, for similar conditions the highest COD removals were obtained at alkaline pH due to the hydroxyl radicals’ high oxidation ability but lack of selectivity.


2015 ◽  
Vol 802 ◽  
pp. 401-405 ◽  
Author(s):  
Nur Nasuha Ahmad Puat ◽  
Hamidi Abdul Aziz

This study evaluated the performance of sequencing batch reactor (SBR) with and without the fibers of poultry slaughterhouse wastewater (PSWW). The fibers act as attachment materials to the suspended solids, which are considered as pollutant in PSWW. PSWW contains high-pollutant concentrations. Experiments were conducted using two 60 L laboratory SBR reactors at room temperature (25 °C) and pH 7±0.5. The removal percentage of SBR with and without the fibers was compared in terms of chemical oxygen demand and biological oxygen demand. The removal percentage of SBR with fibers showed higher overall performance, which was approximately 90%. Meanwhile, the removal of SBR without fibers achieved an average percentage of about 70%, which was slightly lower compared with SBR reactor with fibers.


2015 ◽  
Vol 71 (8) ◽  
pp. 1165-1172 ◽  
Author(s):  
Xiangjuan Ma ◽  
Yang Gao ◽  
Hanping Huang

Attempts were made in this study to examine the efficiency of electrocoagulation (EC) using aluminum (Al) anode and stainless steel net cathode combined with electrochemical oxidation with a β-PbO2 anode or a mixed metal oxide (MMO) anode for treatment of papermaking tobacco sheet wastewater, which has the characteristics of high content of suspended solids (SS), intensive color, and low biodegradability. The wastewater was first subjected to the EC process under 40 mA/cm2 of current density, 2.5 g/L of NaCl, and maintaining the original pH of wastewater. After 6 minutes of EC process, the effluent was further treated by electrochemical oxidation. The results revealed that the removal of SS during the EC process was very beneficial to mass transfer of organics during electrochemical oxidation. After the combined process, 83.9% and 82.8% of chemical oxygen demand (COD) removal could be achieved on the β-PbO2 and MMO anodes, respectively. The main components of the final effluent were biodegradable organic acids, such as acetic acid, propionic acid, butyric acid, valeric acid, and hexahyl carbonic acid; the 5-day biochemical oxygen demand/chemical oxygen demand (BOD5/COD) ratio increased from 0.06 to 0.85 (Al + β-PbO2) or 0.80 (Al + MMO). Therefore, this integrated process is a promising alternative for pretreatment of papermaking tobacco sheet wastewater prior to biological treatment.


Author(s):  
Nor Syamimi Musa ◽  
Wan Azlina Ahmad

Wastewater that has been discharged from the pineapple industry contributes to high levels of Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Suspended Solids (SS). The high levels of COD concentrations in wastewater are toxic to biological life and will affect aquatic environment. Currently, there are many methods that have been developed to treat pineapple industry wastewater such as ozonation, reverse osmosis and filtration. However, these conventional methods are costly and generate large amounts of sludge. Biological treatment may be a good alternative since its operational cost is less and it creates an environmental friendly atmosphere compared to the conventional methods. In this study, the effectiveness of COD reduction involving a single bacterial culture D, G and I isolated from a pineapple industry wastewater were used in batch system. The COD reduction of pineapple industry wastewater was carried out using bacterial culture and pellet. The performance of these systems in reducing the COD level was monitored within 3 days. The COD reduction was analyzed using a Hach DR/4000 U spectrophotometer. The bacterial pellet D, G and I showed a maximal COD reduction of 87%, 77% and 94% respectively after 3 days exposure to wastewater. The wastewater treatment using bacterial pellet showed higher COD reduction as compared to treatment using whole bacterial culture. FESEM analysis showed that bacteria D, G and I appeared as rod shaped.


2019 ◽  
Vol 8 (2) ◽  
pp. 5919-5923

(Being produced in vast quantity as one of by-product from cassava starch processing chains, cassava pulp has great potential for energy recovery by harnessing biogas through anaerobic digestion (AD). This study aims to enhance biogas production by comparative investigation in batch mode digestion. 5%TS w/v of cassava pulp mixed with mill effluent were pre-treated with 10 molar potassium hydroxide (KOH), sodium hydroxide (NaOH), and calcium hydroxide (Ca(OH)2) solution for 6 hours contact time. Effects of different alkaline pre-treatment on cassava substrate were assessed in total dissolved solid (TDS), soluble chemical oxygen demand (SCOD), Volatile Fatty Acids to Alkalinity ratio (VFA/TA), and reducing sugars. Daily accumulated biogas yield was taken as final indicator of the effect of different pre-treatment. KOH pre-treatment in pH 11 resulted highest dissolved solid 13.07 mg/L, and improved soluble chemical oxygen demand (SCOD) formation up to 75.61% (480,000 mg/L) than control substrate. The experiment revealed peak biogas production by KOH pre-treated substrate was found at day 6 after digestion executed, and achieved 546 ml. The finding proves out of different pre-treatment method applicable to cassava pulp, KOH pre-treatment could realistically increase biogas yield for cassava mills. Biogas production increased up to 101%, 92%, and 70% using KOH, Ca(OH)2 and NaOH respectively. However, when future provision to the technology for AD system and design is concerned, the choice of highly reactive alkali could lead to complication in the system.


Sign in / Sign up

Export Citation Format

Share Document