Scale-up of a packed bed column for wastewater treatment

2018 ◽  
Vol 77 (5) ◽  
pp. 1386-1396 ◽  
Author(s):  
A. Ronda ◽  
M. A. Martín-Lara ◽  
O. Osegueda ◽  
V. Castillo ◽  
G. Blázquez

Abstract After checking the success of the biosorption process to remove heavy metals from wastewater using olive tree pruning as a cheap biosorbent in the laboratory scale, the scale-up is necessary to progress towards industrial applications chance. The aim of this work was the study of the effect of scale-up in the process of biosorption of Pb(II) with olive tree pruning in a packed bed column. Experiments were performed using two different scale-up criteria and results obtained in both scales were compared. Similar parameters were obtained for each pair of equivalent tests, with a slightly advanced of the obtained breakthrough curves in the pilot plant. The experimental results were fitted by the Thomas model and the obtained mean values were KTh = 0.187 mL/min·mg and q0 = 20.59 mg/g for criterion 1 and KTh = 0.217 mL/min·mg and q0 = 20.27 mg/g for criterion 2. Finally, the mathematical model was applied to simulate industrial applications and it was obtained that under optimal operative conditions, a column according to the criterion 1 was able to operate 2.3 h, and a column according to the criterion 2 was able to operate for 3.6 h.

2010 ◽  
Vol 136 (12) ◽  
pp. 1389-1397 ◽  
Author(s):  
M. A. Martín-Lara ◽  
F. Hernáinz ◽  
G. Blázquez ◽  
G. Tenorio ◽  
M. Calero

Author(s):  
P. Musonge

A variety of models have been used to describe and predict breakthrough curves for dynamic adsorption systems, in order to scale up laboratory and pilot plant systems. There are however limitations in the applicability of existing models. The study is aimed at providing unambiguous approaches in selecting the best performing model between Thomas, Yoon-Nelson and Bohart-Adams (B-A) models for three dynamic adsorption systems. Three approaches were implemented in this study using published experimental data of three adsorption systems. The first approach was the application of statistical analysis between actual and predicted breakthrough curves without modifying the models. The second and third approaches were application of local mean values (LMV) and global mean values (GMV) of empirical constants to predict breakthrough curves. Predictive and generalization performances of the three models were evaluated using the statistical criteria of Mean Absolute Error (MAE), Root mean Squared Error (RMSE) and Correlation Coefficient (R2).


2018 ◽  
Vol 24 (3) ◽  
pp. 141-153
Author(s):  
Roberto Romaniello ◽  
Antonia Tamborrino ◽  
Alessandro Leone

Abstract. The use of mobile elevated work platforms (MEWPs) versus ladders was studied to evaluate the physical activity (PA) of workers and their performance during olive tree pruning. Accelerometers worn by the workers were used to measure triaxial accelerations, which were converted into PA using Freedson’s equation. The mean values of acceleration on the three axes for workers on ladders led to statistically higher results than for workers on MEWPs. The energy expenditure (EE) and metabolic equivalent (MET) values were statistically different (about 1.8 times higher) for the ladder work site than for the MEWP work site. The use of an MEWP leads to more time spent on moderate activity (84.30%) than when using a ladder (71.90%) but no time on vigorous activity compared to a ladder (13.88%). The pruning performance was 3.8 for the MEWP and 1.4 for the ladder, while the labor productivity was 11.4 for the MEWP and 4.2 for the ladder. Thus, it is possible to reduce worker employment and costs by about 2.7 times with MEWPs. Keywords: Accelerometry, Ladders, Mobile elevated work platform (MEWP), Olive tree pruning, Physical activity, Work overhead.


2016 ◽  
Vol 31 (1) ◽  
pp. 542-554 ◽  
Author(s):  
Susanna Nilsson ◽  
Alberto Gómez-Barea ◽  
Diego Fuentes-Cano ◽  
Pedro Haro ◽  
Guadalupe Pinna-Hernández

2006 ◽  
Vol 514-516 ◽  
pp. 1294-1298 ◽  
Author(s):  
Maria Teresa Tavares ◽  
Cristina Quintelas ◽  
Hugo Figueiredo ◽  
Isabel Neves

This study aims the definition of a new material that may act as a robust and yet cost effective biosorbent for treatment of wastewater with low concentration of heavy metals. A comparative study was made between two biosorption systems composed of an Arthrobacter viscosus biofilm supported on Cuban natural zeolites and on prepared NaY and NaX, in terms of their ability to retain ionic chromium. The bacterium is able to reduce Cr(VI) to Cr(III) and, only then, this smaller and positive ion may be entrapped in the zeolite cages by ion exchange. The first support was tested in a continuous flow semi-packed bed column. The highest removal ratio, 42%, was achieved for initial chromium concentration of 10 mg/L, but the best up-take, 5.5 mg/gzeolite, was obtained for initial concentration of 70 mg/L. Biosorbents prepared with the same biofilm supported in NaY and NaX zeolites were also considered in batch studies, with a typical kinetics of biosorption processes, reaching 20% of initial chromium removal within an initial range of Cr(VI) concentration between 50 and 250 mg/L. These last structures were characterized by spectroscopic methods (FTIR and ICP-AES), surface analysis (DRX) and thermal analysis (TGA). All these techniques indicated that the biosorption process does not modify the morphology and structure of the FAU-zeolites.


2013 ◽  
Vol 19 (4) ◽  
pp. 461-470 ◽  
Author(s):  
R. Rajeshkannan ◽  
M. Rajasimman ◽  
N. Rajamohan

A continuous fixed bed study was carried out by using tamarind seed as a sorbent for the removal of malachite green (MG) and acid blue 9(AB9) from aqueous solution. The effect of factors, such as flow rate and bed depth was studied. Data confirmed that the breakthrough curves were dependent on flow rate and bed depth. Thomas, Adams-Bohart, and Yoon-Nelson models were applied to experimental data to predict the breakthrough curves using non-linear regression and to determine the characteristic parameters of the packed bed column. Bed depth/service time analysis (BDST) model was used to express the effect of bed depth on breakthrough curves. The results showed that Thomas model was found suitable for the normal description of breakthrough curve at the experimental condition, while Adams-Bohart and Yoon-Nelson model were able to explain only the initial part of dynamic behaviour of the tamarind seed column. The data were in good agreement with BDST model. It was concluded that the tamarind seed can be effectively used as a sorbent for the removal of dyes.


Sign in / Sign up

Export Citation Format

Share Document