scholarly journals Packed bed column studies for the removal of dyes using novel sorbent

2013 ◽  
Vol 19 (4) ◽  
pp. 461-470 ◽  
Author(s):  
R. Rajeshkannan ◽  
M. Rajasimman ◽  
N. Rajamohan

A continuous fixed bed study was carried out by using tamarind seed as a sorbent for the removal of malachite green (MG) and acid blue 9(AB9) from aqueous solution. The effect of factors, such as flow rate and bed depth was studied. Data confirmed that the breakthrough curves were dependent on flow rate and bed depth. Thomas, Adams-Bohart, and Yoon-Nelson models were applied to experimental data to predict the breakthrough curves using non-linear regression and to determine the characteristic parameters of the packed bed column. Bed depth/service time analysis (BDST) model was used to express the effect of bed depth on breakthrough curves. The results showed that Thomas model was found suitable for the normal description of breakthrough curve at the experimental condition, while Adams-Bohart and Yoon-Nelson model were able to explain only the initial part of dynamic behaviour of the tamarind seed column. The data were in good agreement with BDST model. It was concluded that the tamarind seed can be effectively used as a sorbent for the removal of dyes.

2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2019 ◽  
Vol 25 (4) ◽  
pp. 383-393
Author(s):  
Abel Adeyi ◽  
Siti Jamil ◽  
Luqman Abdullah ◽  
Thomas Choong ◽  
Mohammad Abdullah ◽  
...  

Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TU-poly(AN-co-AA)) polymeric adsorbent was synthesized and characterized with Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and Zetasizer. Adsorptive removal of cationic malachite green (MG) dye from aqueous solution in a continuous TU-poly(AN-coAA) packed-bed column was studied. The influences of solution pH (2-9), inlet MG concentration (25-80 mg/L), bed depth (4-8 cm) and linear flow rate (1.5-5.0 mL/min) were investigated via assessment of the column breakthrough curves. Low pH and short bed depth, high MG concentration and flow rate led to early breakthrough of MG. According to correlation coefficients (R2) and sum of the squares of the errors (SSE) values, Thomas and Yoon-Nelson dynamic models are more suitable to describe the column experimental data compared to the Bohart-Adams model. TU-poly(AN-co-AA) exhibited effective separation of MG from the liquid phase and displayed high adsorption capacities after five regeneration cycles.


Author(s):  
Ramamoorthy Ramasamy ◽  
Renganathan Sahadevan ◽  
Velan Manikam ◽  
Dharmendira Kumar Mahendradas ◽  
Raajenthiren Muniswamy

Biosorption of Acid Blue 5 dye by the Eichhornia crassipes was investigated in batch and column studies. Batch experiments were conducted to study the effect of initial solution pH and dye concentration. Langmuir and Freundlich sorption models were used to represent the equilibrium data. Experimental breakthrough curves in a column were obtained with bed height (5, 10 and 15 cm), flow rate (20, 25 and 30mL/min) and initial dye concentration (50, 75 and 100 mg/L). An increase in bed height and initial dye concentration favors the dye biosorption, while the minimum flow rate produced maximum dye biosorption. It was observed that the uptake of Acid Blue 5 using a bed height of 15 cm, flow rate of 20 mL/min and initial dye concentration of 100 mg/L was found to be more when compared to all other bed height, flow rate and initial dye concentration studied in the present investigation. The Bed Depth Service Time (BDST) model was used for the evaluation of continuous sorption data.


2021 ◽  
Author(s):  
Lamis A. Attia ◽  
N.M. Sami ◽  
H.S. Hassan ◽  
Sayed Metwally

Abstract The purification of wastewater is preferred using the adsorption technique by the column due to the high efficiency of the process. The column studies are achieved to predict the removal of pollutants and clarify the adsorption capability of these pollutants in the treatment process of wastewater. Zinc and cadmium ions are presented in both radioactive and industrial wastes. Consequently, this work focused on the removal of zinc and cadmium ions from polluted wastewater using a fixed-bed column. Zirconia–silicate composite (ZrO2–SiO2) was produced using the sol-gel technique and analyzed for this purpose. Various parameters as bed depth (2, 3, and 5 cm), flow rate (2 and 3 mL/min), and initial ions concentrations (50–200 mg/L) were investigated. The column performance was computed to be 80.3 and 79.3% for Zn2+ and Cd2+, respectively, at the optimum conditions (3 cm bed depth, 2 mL/min flow rate, and 100 mg/L ions concentration). Thomas, Adams–Bohart, and Yoon–Nelson models were performed to estimate the breakthrough curves and compute the column model parameters which are valuable for process design. Thomas model presented the highest R2 values (0.84–0.97) and offered the most accurate estimation of the adsorption process.


2014 ◽  
Vol 3 (4) ◽  
pp. 512 ◽  
Author(s):  
Beraki Bahre Mehari ◽  
Alfred O. Mayabi ◽  
Beatrice K. Kakoi

The breakthrough curves of fluoride adsorption onto crushed burnt clay pot in mini column fixed bed depths of 15, 20, and 25 cm at a continuous flow rate of 2.5, 5, 10 and 15 ml/min were used to investigate the simplified fixed bed design models (BDST and EBRT). The influent fluoride concentration was 5 mg/L and the breakthrough point was taken at 30% of the influent concentration. Results indicate that the BDST curve had the form of straight line explaining more than 99.6% of the data and thus confirmed to obey the BDST model. For the same operating parameters of 50 cm bed depth and 36 cm/h flow rate, 350 L water could have been defluoridated using BDST model, however, in the case of the pilot experiment, 324 L were defluoridated from 5 to 1.5 mg/L fluoride. This was 8% higher only and hence was not significant. Similarly, when the bed depth data were analyzed, results indicate that at higher EBRT values, the adsorbent exhaustion rate were similar to the batch adsorption and thus the EBRT model could be used to optimize for the design of defluoridation unit. Therefore, the simplified fixed bed design models (BDST and EBRT) could be successfully applied to analyze the column performance and design a fluoride adsorption system based on crushed burnt clay pot as a sorbent media. Keywords: Breakthrough Curve, BDST, EBRT, Crushed Burnt Clay Pot, Fluoride Adsorption.


2014 ◽  
Vol 496-500 ◽  
pp. 259-263 ◽  
Author(s):  
Zhi Hui Du ◽  
Ming Chun Jia ◽  
Jin Feng Men

Two spherical composite adsorbents namely polyacrylonitrilepotassium cobalt hexacyanoferrates (PAN-KCoCF) and polyacrylonitrilepotassium nickel hexacyanoferrates (PAN-KNiCF) were synthesized. The effects of liquid flow rate, bed height and presence of other cations on the adsorption of cesium were investigated by conducting fixed-bed columns. The results showed that the column performed well at lowest flow rate for PAN-KNiCF. Flow rate examined had little influence on the adsorption of PAN-KCoCF. The breakthrough time decreased with decreasing bed height for both PAN-KCoCF and PAN-KNiCF. In addition, the existence of K+, Na+, NH4+, Ca2+and Mg2+in solution caused a reduction of maximum adsorption capacity for both of the composites. The bed depth service time (BDST) model and the Thomas model were used to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2018 ◽  
Vol 18 (2) ◽  
pp. 294 ◽  
Author(s):  
Amina Abdel Meguid Attia ◽  
Mona Abdel Hamid Shouman ◽  
Soheir Abdel Atty Khedr ◽  
Nevin Ahmed Hassan

The goal of this article describes the potential of utilizing jojoba leaves and also modified with chitosan as an efficient adsorption materials for Congo red dye removal in a fixed-bed column. Inlet dye concentration, feed flow rate and bed height had a great influence on determining the breakthrough curves. The percentage dye removal was found to be approximately 69% of coated jojoba leaves with flow rate 3 mL/min, initial concentration 50 mg/L and 4 cm bed height. The dye uptake capacity at equilibrium (qe) for coated jojoba leaves showed higher values than that found for jojoba leaves. On this basis, this implies that the amino groups played an important role during the adsorption process. Breakthrough curves were satisfactorily in good agreement with both Thomas and Yoon-Nelson models based on the values of correlation coefficient (R2 ≥ 96).This study serves as a good fundamental aspect of wastewater purification on jojoba leaves as a novel adsorbent for the uptake of Congo red dyes from aqueous solution in a column system.


2017 ◽  
Vol 8 (3) ◽  
pp. 372-385 ◽  
Author(s):  
T. P. Makhathini ◽  
S. Rathilal

Abstract The competitive simultaneous removal of petrochemical hydrocarbons including benzene, toluene, ethylbenzene and isomers of xylene (BTEX) from an aqueous solution by polystyrenic resin (PAD 910) was investigated at dynamic conditions in a packed bed column. The column was operated under conditions of bed length (Z = 30–90 cm), flow rate (Q = 18.5–53.5 cm/min), bed diameter (D = 2.5–5 cm) and initial concentration of (C0 = 5–14.5 mg/l) to investigate the adsorption characteristics of BTEX at an influent pH of 6.85. There was evidence of improved column performance with increasing operating height and decreased flow rate. Breakthrough curves of fixed-bed adsorption process were developed by the constant-pattern approach using a constant driving force model in the liquid phase. A fairly good fit to the experimental data was obtained using the constant-pattern approach and a Langmuir isotherm model obtained from previous work. In addition, a prediction of volumetric mass transfer coefficient correlation in the liquid phase was suggested. Desorption from polystyrenic resin adsorbed with BTEX was investigated by using two different organic solvents as desorbates.


2020 ◽  
Vol 17 (4) ◽  
pp. 47-52
Author(s):  
Vibha Goswami ◽  
Renu Upadhyaya ◽  
Sumanta Kumar Meher

In this study, synthesised Azadirachta indica adsorbent was used for the removal of methylene blue dye using a packed bed column. The effect of feed flow rate, feed methylene blue dye concentration, and bed height of column on percentage removal of dye was studied. It was observed that the column bed exhausted rapidly at a higher flow rate and therefore, a breakthrough occurred faster. However, it was observed that bed exhaustion time increases on increasing the bed height from 2 to 10 inch at 10 mg/L feed dye concentration and feed flow rate of 40 ml/min. It was also found that the breakthrough curve is more dispersed and the percentage removal of dye increases on decreasing the feed methylene dye concentration from 150 to 10 mg/L. The percentage removal was found to be 96.89% at 20 ml/min of feed flow rate under 10 inch of bed height and 10 mg/L of feed dye concentration. The atomic absorption spectrophotometer and scanning electron microscope were used for estimating the effluent dye concentration from the column and morphological study, respectively.


Sign in / Sign up

Export Citation Format

Share Document