scholarly journals RAVITA Technology – new innovation for combined phosphorus and nitrogen recovery

2018 ◽  
Vol 78 (12) ◽  
pp. 2511-2517 ◽  
Author(s):  
Laura Rossi ◽  
Sini Reuna ◽  
Tommi Fred ◽  
Mari Heinonen

Abstract Present phosphorus (P) recovery technologies mainly contain P recovery from sludge liquor or ash. These types of technologies are suitable for large wastewater treatment plants (WWTPs) with enhanced biological phosphorus removal (EBPR), digestion and/or incineration. In Finland and other Nordic countries, strict P discharge limits require chemical precipitation, thus EBPR alone is not sufficient. Ammonium recovery from wastewater, on the other hand, is not so often discussed. However, recovery from WWTP reject waters would decrease the energy demand of ammonium synthesis by Haber-Bosh technology and the energy demand of the WWTP's biological process. Helsinki Region Environmental Services Authority (HSY) has developed a new process called RAVITA whereby P and nitrogen recovery are combined in order to produce phosphoric acid (H3PO4) and ammonium phosphate (NH4)3PO4. Furthermore, in this process metal salt used in precipitation is recovered. The research was carried out on pilot (1,000 population equivalent) and laboratory scales. The objectives of this article are to explain the principles of the RAVITA process and give the first results of processing and production of chemical sludge.

2000 ◽  
Vol 41 (9) ◽  
pp. 21-28 ◽  
Author(s):  
C.W. Randall ◽  
E. Ubay Cokgor

The performance and economics of four recently constructed or modified BNR municipal wastewater treatment plants located in the Chesapeake Bay Watershed, USA were evaluated, and compared to a treatment plant implementing chemical phosphorus removal and complete nitrification. Phosphorus removal has been very reliable to effluent concentrations below 0.5 mg/L without chemical addition or effluent filtration at BNR plants that have been operating for more than two years. Significant variation was observed in the wastewater characteristics, and this has affected biological phosphorus removal. Chemical precipitation effluent TP concentrations have averaged less than 0.1 mg/L.The small BNR plant was clearly the most costly to operate per 1000 m3/d of flow, which illustrates economy of scale. The chemical precipitation plant was generally more expensive to operate than the large BNR plants.


2020 ◽  
Vol 12 (2) ◽  
pp. 575 ◽  
Author(s):  
Maria Concetta Tomei ◽  
Valentina Stazi ◽  
Saba Daneshgar ◽  
Andrea G. Capodaglio

Combined phosphorus (P) removal and recovery from wastewater is a sensible and sustainable choice in view of potential future P-resource scarcity, due to dwindling primary global reserves. P-recovery from wastewater, notwithstanding the relatively small fraction of total global amounts involved (less than 1/5 of total global use ends up in wastewater) could extend the lifespan of available reserves and improve wastewater cycle sustainability. The recovery of the resource, rather than its mere removal as ferric or aluminum salt, will still allow to achieve protection of receiving waters quality, while saving on P-sludge disposal costs. To demonstrate the possibility of such a recovery, a strategy combining enhanced biological phosphorus removal and mineral P-precipitation was studied, by considering possible process modifications of a large treatment facility. Process simulation, a pilot study, and precipitation tests were conducted. The results demonstrated that it would be possible to convert this facility from chemical -precipitation to its biological removal followed by mineral precipitation, with minimal structural intervention. Considerable P-recovery could be obtained, either in form of struvite or, more sustainably, as calcium phosphate, a mineral that also has possible fertilizing applications. The latter would present a cost about one order of magnitude lower than the former.


2003 ◽  
Vol 47 (12) ◽  
pp. 119-124
Author(s):  
A. Schulz ◽  
F. Obenaus ◽  
B. Egerland ◽  
E. Reicherter

The present report presents the system and discusses the results of the cost calculation for the reduction/elimination of different wastewater and sludge compounds. These costs were calculated for different types of processes at 102 wastewater treatment plants of Emschergenossenschaft/Lippeverband and Aggerverband. Comparing enhanced biological phosphorus removal and precipitation, one of the results indicates that in general the costs for elimination of one kilogram of phosphorus are lower in the plants in which only chemical precipitation is used for P reduction. Further results of the cost calculation will be presented with a discussion of their possible influence on planning decisions.


1989 ◽  
Vol 21 (10-11) ◽  
pp. 1373-1387 ◽  
Author(s):  
R. Boll ◽  
R. Kayser ◽  
A. Peter ◽  
F. Sarfert

In investigations concerning sludge bulking in Berlin enhanced biological phosphorus removal was first observed unexpectedly. Because since 1986 an officially preset limit of 2 mg TP/l must be kept in all Berlin wastewater discharges it was decided to explore the capabilities of the observed mechanism under the specific circumstances of the existing two large treatment plants in Ruhleben (240,000 m3/d) and Marienfelde (100,000 m3/d). For this purpose some of the existing units at both plants were equipped with anaerobic zones which were generated mainly by process modifications. Additionally stage one of the Ruhleben plant was altered completely in order to investigate the combination of biological phosphorus and nitrogen removal as a special pilot study in three parallel trains. The research activities and treatment results gained in each of the two stages of the Ruhleben and in the Marienfelde plant are reported in detail. For example BOD-related phosphorus removal rates were obtained ranging from 2.3-4.5 mg TP per 100 mg BOD removed. It must be stressed that all examinations were performed under full-scale conditions. At present the given limit of 2 mg TP/l in the Ruhleben plant is met without any chemical precipitation at least on average. From the beginning biological phosphorus removal will be integrated into further projected extensions.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 35-43
Author(s):  
K. D. Tracy ◽  
S. N. Hong

The anaerobic selector of the A/0™ process offers many advantages over conventional activated sludge processes with respect to process performance and operational stability. This high-rate, single-sludge process has been successfully demonstrated in full-scale operations for biological phosphorus removal and total nitrogen control in addition to BOD and TSS removal. This process can be easily utilized in upgrading existing treatment plants to meet stringent discharge limitations and to provide capacity expansion. Upgrades of two full-scale installations are described and performance data from the two facilities are presented.


1991 ◽  
Vol 24 (7) ◽  
pp. 133-148 ◽  
Author(s):  
A. Peter ◽  
F. Sarfert

In investigations concerning sludge bulking in Berlin enhanced biological phosphorus removal was first observed unexpectedly. Because since 1986 an officially preset limit of 2 mg TP/l must be kept in all Berlin wastewater discharges it was decided to explore the capabilities of the observed mechanism under the specific circumstances of the exciting two large treatment plants in Ruhleben (240,000 m3/d) and Marienfelde (100,000 m3/d). For this purpose some of the existing units at both plants were equipped with anaerobic zones which were generated mainly by process modifications. Additionally stage one of the Ruhleben plant was altered completely in order to investigate the combination of biological phosphorus and nitrogen removal as a special pilot study in three parallel trains. The research activities and treatment results gained in each of the two stages of the Ruhleben and in the Marienfelde plant are reported in detail. For example BOD-related phosphorus removal rates were obtained ranging from 2.3-4.5 mg TP per 100 mg BOD removed. It must be stressed that all examinations were performed on full-scale conditions. At present the given limit of 2 mg TP/l in the Ruhleben plant is met without any chemical precipitation at least on average. From the beginning biological phosphorus removal will be integrated into further projected extensions.


1994 ◽  
Vol 29 (12) ◽  
pp. 279-282 ◽  
Author(s):  
C. Güldner ◽  
W. Hegemann ◽  
N. Peschen ◽  
K. Sölter

The integration of the chemical precipitation unit which would inject a lime solution into a series of mechanical-biological processes, including nitrification/denitrification, and the sludge treatment are the subject of this project. The essential target is the large-scale reconstruction of a mechanical-biological sewage treatment plant with insufficient cleaning performance in the new German states and the adjustment of the precipitation stage to the unsteady inflow of sewage. First results indicate that the pre-treatment performance could be improved by ≅ 20% and the discharge of concentrations of COD, BOD, N and P could be reduced and homogenized. In addition, experiments on hydrolysis and acidifiability of the pre-treatment sludge have been carried out on a laboratory level with the object of making sources of carbon readily available for denitrification. In the course of the experiment, inhibition of fatty acid production by calcareous primary sludge could not be detected. The characteristics of the sludge, such as draining and thickening were considerably improved by the adding of lime.


1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document