Evaluation of Small Wastewater Treatment Plants in the County of Århus – Denmark

1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.

2013 ◽  
Vol 6 (1) ◽  
pp. 97-117 ◽  
Author(s):  
E. Lee ◽  
S. Lee ◽  
J. Park ◽  
Y. Kim ◽  
J. Cho

Abstract. Since trace organic compounds such as pharmaceuticals in surface water have been a relevant threat to drinking water supplies, in this study the removal of pharmaceuticals and transformation of pharmaceuticals into metabolites were investigated in the main sources of micropollutants such as wastewater treatment plants (WWTPs) and engineered constructed wetlands. Pharmaceuticals were effectively removed by different WWTP processes and wetlands. Pharmaceutical metabolites with relatively low log D value resulted in the low removal efficiencies compared to parent compounds with relatively high log D value, indicating the stability of metabolites. And the constructed wetlands fed with wastewater effluent were encouraged to prevent direct release of micropollutants into surface waters. Among various pharmaceuticals, different transformation pattern of ibuprofen was observed with significant formation of 1-hydroxy-ibuprofen during biological treatment in WWTP, indicating preferential biotransformation of ibuprofen. Lastly, transformation of pharmaceuticals depending on their structural position was investigated in terms of electron density, and the electron rich C1 = C2 bond of carbamazepine was revealed as an initial transformation position.


Author(s):  
Vicent Hernández-Chover ◽  
Lledó Castellet-Viciano ◽  
Francesc Hernández-Sancho

Optimal management is usually at the top of the concerns in the context of water infrastructures. In the specific domain of wastewater treatment plants (WWTPs), European Directive 91/271 established the need of implementing a biological treatment of wastewater leading to an intensive construction of WWTPs in several European countries, which now present important problems of maintenance. These facilities are composed of different types of assets, which should be managed efficiently in order to optimize the performance of the processes as well as the maintenance and replacement costs of the equipment. In fact, the deterioration of these assets increases the operational risk and endangers the continuity of the service of these WWTPs. In this paper, the authors combine multicriteria methodologies (MCDM) and economic aspects of the equipment to define an appropriate technical–economical replacement policy. With the aim of developing a reference procedure in the wastewater sector, an approach has been made to blower pump, which is an equipment widely used in WWTPs to provide a continuous air flow to the reactor facilitating the elimination of organic matter and the nutrients contained in the wastewater. The proposal integrates aspects such as acquisition costs and corrective maintenance, interest rate, and amortization based on the condition of the equipment.


2013 ◽  
Vol 6 (3) ◽  
pp. 222-230 ◽  

The use of conventional textile wastewater treatment processes becomes drastically challenged to environmental engineers with increasing more and more restrictive effluent quality by water authorities. Conventional treatment such as biological treatment discharges will no longer be tolerated as 53% of 87 colours are identified as non-biodegradable. Advanced oxidation processes hold great promise to provide alternative for better treatment and protection of environment, thus are reviewed in this paper. An overview of basis and treatment efficiency for different AOPs are considered and presented according to their specific features.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 65-72 ◽  
Author(s):  
H.-H. Schierup ◽  
H. Brix

Since 1983 approximately 150 full-scale emergent hydrophyte based wastewater treatment plants (reed beds) have been constructed in Denmark to serve small wastewater producers. The development of purification performance for 21 plants representing different soil types, vegetation, and hydraulic loading rates has been recorded. Cleaning efficiencies were typically in the range of 60-80% reduction for BOD, 25-50% reduction for total nitrogen, and 20-40% reduction for total phosphorus. The mean effluent BOD, total nitrogen and total phosphorus concentrations of the reed beds were 19 ± 10, 22 ± 9 and 6.7 ± 3.2 mg/l (mean ± SD), respectively. Thus, the general Danish effluent standards of 8 mg/l for N and 1.5 mg/l for P for sewage plants greater than 5,000 PE cannot be met by the present realised design of EHTS. The main problem observed in most systems is a poor development of horizontal hydraulic conductivity in the soil which results in surface run-off. Since the political demands for effluent quality will be more strict in the future, it is important to improve the performance of small decentral sewage treatment plants. On the basis of experiences from different types of macrophyte based and conventional low-technology wastewater treatment systems, a multi-stage system is suggested, consisting of sedimentation and sand filtration facilities followed by basins planted with emergent and submergent species of macrophytes and algal ponds.


1996 ◽  
Vol 33 (1) ◽  
pp. 81-87
Author(s):  
L. Van Vooren ◽  
P. Willems ◽  
J. P. Ottoy ◽  
G. C. Vansteenkiste ◽  
W. Verstraete

The use of an automatic on-line titration unit for monitoring the effluent quality of wastewater plants is presented. Buffer capacity curves of different effluent types were studied and validation results are presented for both domestic and industrial full-scale wastewater treatment plants. Ammonium and ortho-phosphate monitoring of the effluent were established by using a simple titration device, connected to a data-interpretation unit. The use of this sensor as the activator of an effluent quality proportional sampler is discussed.


Author(s):  
Manoj Kumar ◽  
Rajesh Singh

In the present study area-based, pollutant removal kinetic analysis was considered using the Zero-order, first-order decay and efficiency loss (EL) models in the constructed wetlands (CWs) for municipal wastewater treatment....


1992 ◽  
Vol 25 (6) ◽  
pp. 125-139 ◽  
Author(s):  
J. Kappeler ◽  
W. Gujer

To predict the behaviour of biological wastewater treatment plants, the Activated Sludge Model No. 1 is often used. For the application of this model kinetic parameters and wastewater composition must be known. A simple method to estimate kinetic parameters of heterotrophic biomass and COD wastewater fractions is presented. With three different types of batch-tests these parameters and fractions can be determined by measuring oxygen respiration. Our measurements showed that the maximum specific growth rate µmax of heterotrophic biomass depends on temperature, reactor configuration and SRT. In typical wastewater treatment plants of Switzerland the amount of readily biodegradable substrate was generally small (about 9 % of the COD in primary effluent). The same method can also be used to determine kinetic parameters of nitrifying biomass.


2017 ◽  
Vol 76 (5) ◽  
pp. 1225-1233 ◽  
Author(s):  
M. Schäfer ◽  
I. Hobus ◽  
T. G. Schmitt

In the future, an additional potential of control reserve as well as storage capacities will be required to compensate fluctuating renewable energy availability. The operation of energy systems will change and flexibility in energy generation and consumption will rise to a valuable asset. Wastewater treatment plants (WWTPs) are capable of providing the flexibility needed, not only with their energy generators but also in terms of their energy consuming aggregates on the plant. To meet challenges of the future in regard to energy purchase and to participate in and contribute to such a volatile energy market, WWTPs have to reveal their energetic potential as a flexible service provider. Based on the evaluated literature and a detailed analysis of aggregates on a pilot WWTP an aggregate management has been developed to shift loads and provide a procedure to identify usable aggregates, characteristic values and control parameters to ensure effluent quality. The results show that WWTPs have a significant potential to provide energetic flexibility. Even for vulnerable components such as aeration systems, load-shifting is possible with appropriate control parameters and reasonable time slots without endangering system functionality.


2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 33-38 ◽  
Author(s):  
R. Pujol ◽  
M. Hamon ◽  
X. Kandel ◽  
H. Lemmel

More than fifty wastewater treatment plants worldwide (representing several millions p.e) are equipped with up-flow biofiltration reactors (BioforR). Their range of application encompasses municipal as well as industrial wastewater. A summary of the results achieved in a large number of plants is presented, accompanied by a description of the operating parameters and the treatment limitations with regard to various pollutants (C, N, P). The separation of functions into specific reactors combined with optimized wash conditions guarantees high treatment efficiency.


Sign in / Sign up

Export Citation Format

Share Document