scholarly journals Pilot-scale study to investigate the impact of rotating belt filter upstream of a MBR for nitrogen removal

2019 ◽  
Vol 79 (3) ◽  
pp. 458-465
Author(s):  
V. A. Razafimanantsoa ◽  
D. Adyasari ◽  
A. K. Sahu ◽  
B. Rusten ◽  
T. Bilstad ◽  
...  

Abstract The goal of this study was to investigate what kind of impact the removal of particulate organic matter with 33μm rotating belt filter (RBF) (as a primary treatment) will have on the membrane bioreactor (MBR) performance. Two small MBR pilot plants were operated in parallel, where one train treated 2mm screened municipal wastewater (Train A) and the other train treated wastewater that had passed through a RBF with a 33μm filter cloth (Train B). The RBF was operated without a filter mat on the belt. About one third of the organic matter was removed by the fine mesh filter. The assessment of the overall performance showed that the two pilot plants achieved approximately the same removal efficiencies with regard to total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus and total nitrogen. It was also observed that the system with 33μm RBF as a primary treatment produced more sludge, which could be used for biogas production, and required about 30% less aeration downstream. Transmembrane pressure was significantly lower for the train receiving 33μm primary treated wastewater compared to the control receiving 2mm screened wastewater.

2015 ◽  
Vol 73 (2) ◽  
pp. 337-344 ◽  
Author(s):  
B. Rusten ◽  
V. A. Razafimanantsoa ◽  
M. A. Andriamiarinjaka ◽  
C. L. Otis ◽  
A. K. Sahu ◽  
...  

The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10–15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.


2018 ◽  
Vol 78 (7) ◽  
pp. 1566-1575 ◽  
Author(s):  
S. S. Rathnaweera ◽  
B. Rusten ◽  
K. Korczyk ◽  
B. Helland ◽  
E. Rismyhr

Abstract A pilot-scale CFIC® (continuous flow intermittent cleaning) reactor was run in anoxic conditions to study denitrification of wastewater. The CFIC process has already proven its capabilities for biological oxygen demand removal with a small footprint, less energy consumption and low cost. The present study focused on the applicability for denitrification. Both pre-denitrification (pre-DN) and post-denitrification (post-DN) were tested. A mixture of primary treated wastewater and nitrified wastewater was used for pre-DN and nitrified wastewater with ethanol as a carbon source was used for post-DN. The pre-DN process was carbon limited and removal rates of only 0.16 to 0.74 g NOx-N/m²-d were obtained. With post-DN and an external carbon source, 0.68 to 2.2 g NO3-Neq/m²-d removal rates were obtained. The carrier bed functioned as a good filter for both the larger particles coming with influent water and the bio-solids produced in the reactor. Total suspended solids removal in the reactor varied from 20% to 78% (average 45%) during post-DN testing period and 9% to 70% (average 29%) for pre-DN. The results showed that the forward flow washing improves both the DN function and filtration ability of the reactor.


2017 ◽  
Vol 75 (11) ◽  
pp. 2598-2606 ◽  
Author(s):  
B. Rusten ◽  
S. S. Rathnaweera ◽  
E. Rismyhr ◽  
A. K. Sahu ◽  
J. Ntiako

Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40–50% without polymer to 60–70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.


2014 ◽  
Vol 69 (9) ◽  
pp. 1942-1948 ◽  
Author(s):  
V. A. Razafimanantsoa ◽  
L. Ydstebø ◽  
T. Bilstad ◽  
A. K. Sahu ◽  
B. Rusten

The purpose of this project was to investigate the effect of selective particle removal during primary treatment on downstream biological nutrient removal processes. Bench-scale Salsnes Filter fine mesh sieves were used as a primary treatment to obtain different organic fractions to test the effect on denitrification. Activated sludge and moving bed biofilm reactor anoxic tests were performed on municipal wastewater collected from two full-scale wastewater treatment plants located around the Oslo region (Norway). About 43% of the suspended solids in the wastewater was less than 18 μm, and 14% was between 18 and 150 μm. The effect of particulate chemical oxygen demand (COD) removal on denitrification rates was very minor.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 253
Author(s):  
Carlos Carbonell-Alcaina ◽  
Jose Luis Soler-Cabezas ◽  
Amparo Bes-Piá ◽  
María Cinta Vincent-Vela ◽  
Jose Antonio Mendoza-Roca ◽  
...  

Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated. The process proposed in this work consists of the following membrane-based technologies: Ultrafiltration (UF) (UP005, Microdyn Nadir), Forward Osmosis (FO) (Osmen2521, Hydration Technology Innovation) and Nanofiltration (NF) (NF245, Dow). The FO process was implemented to reduce the salinity entering the NF process, using the FTOP as draw solution and, at the same time, to concentrate the centrate produced in the sludge treatment of a municipal wastewater treatment plant with the aim of obtaining a stream enriched in nutrients. The UF step achieved the elimination of 50% of the chemical oxygen demand of the FTOP. The UF permeate was pumped to the FO system reducing the volume of the anaerobically digested sludge centrate (ADSC) by a factor of 3 in 6.5 h. Finally, the ultrafiltrated FTOP diluted by FO was subjected to NF. The transmembrane pressure needed in the NF stage was 40% lower than that required if the ultrafiltration permeate was directly nanofiltered. By means of the integrated process, the concentration of organic matter and phenolic compounds in the FTOP decreased by 97%. Therefore, the proposed process was able to obtain a treated brine that could be reused in other processes and simultaneously to concentrate a stream, such as the ADSC.


2017 ◽  
Vol 76 (7) ◽  
pp. 1796-1804 ◽  
Author(s):  
Konstantinos Azis ◽  
Charalampos Vardalachakis ◽  
Spyridon Ntougias ◽  
Paraschos Melidis

The aim of this study was to assess the efficacy and effluent quality of a pilot-scale intermittently aerated and fed, externally submerged membrane bioreactor (MBRes) treating municipal wastewater. The effluent quality of the MBRes was evaluated regarding system ability to comply with the Greek legislative limits for restricted and unrestricted wastewater reuse. The average permeate flux was 13.9 L m−2 h−1, while the transmembrane pressure remained above the level of −110 mbar. Experimental data showed that biochemical oxygen demand, chemical oxygen demand, total nitrogen, PO43−- P and total suspended solids removal efficiencies were 97.8, 93.1, 89.6, 93.2 and 100%, respectively, whereas turbidity was reduced by 94.1%. Total coliforms and Escherichia coli were fully eliminated by ultrafiltration and disinfection methods, such as chlorination and ultraviolet radiation. In agreement with the Greek legislation (Joint Ministerial Decree 145116/11) and the guidelines recommended for the Mediterranean countries, the disinfected effluent of the MBRes system can be safely reused directly for urban purposes.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 397
Author(s):  
Magdalena Zielińska ◽  
Katarzyna Bernat ◽  
Wioleta Mikucka

Although the membrane bioreactor technology is gaining increasing interest because of high efficiency of wastewater treatment and reuse, data on the anaerobic transformations of retentate are scarce and divergent. The effects of transmembrane pressure (TMP) in microfiltration (MF) and ultrafiltration (UF) on the pollutant rejection, susceptibility of ceramic membrane to fouling, hydraulic parameters of membrane module, and biogas productivity of retentate were determined. Irrespective of the membrane cut-off and TMP (0.2–0.4 MPa), 97.4 ± 0.7% of COD (chemical oxygen demand), 89.0 ± 4.1% of total nitrogen, and 61.4 ± 0.5% of total phosphorus were removed from municipal wastewater and the permeates can be reused for irrigation. Despite smaller pore diameter, UF membrane was more hydraulically efficient. MF membrane had 1.4–4.6 times higher filtration resistances than UF membrane. In MF and UF, an increase in TMP resulted in an increase in permeate flux. Despite complete retention of suspended solids, strong shearing forces in the membrane installation changed the kinetics of biogas production from retentate in comparison to the kinetics obtained when excess sludge from a secondary clarifier was anaerobically processed. MF retentates had 1.15 to 1.28 times lower cumulative biogas production than the excess sludge. Processing of MF and UF retentates resulted in about 60% elongation of period in which 90% of the cumulative biogas production was achieved.


2017 ◽  
Vol 76 (7) ◽  
pp. 1770-1780 ◽  
Author(s):  
J. Väänänen ◽  
S. Memet ◽  
T. Günther ◽  
M. Lilja ◽  
M. Cimbritz ◽  
...  

For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12–80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.


2003 ◽  
Vol 3 (4) ◽  
pp. 145-152 ◽  
Author(s):  
H. Heinonen-Tanski ◽  
P. Juntunen ◽  
R. Rajala ◽  
E. Haume ◽  
A. Niemelä

Municipal treated wastewater has been tertiary treated in a pilot-scale rapid sand filter. The filtration process was improved by using polyaluminium coagulants. The sand-filtered water was further treated with one or two UV reactors. The quality changes of wastewater were measured with transmittance, total phosphorus, soluble phosphorus, and somatic coliphages, FRNA-coliphages, FC, enterococci and fecal clostridia. Sand filtration alone without coagulants improved slightly some physico-chemical parameters and it had almost no effect on content of microorganisms. If coagulants were used, the filtration was more effective. The reductions were 88-98% for microbial groups and 80% for total phosphorus. The wastewater would meet the requirements for bathing waters (2,000 FC/100 ml, EU, 1976). UV further improved the hygiene level; this type of treated wastewater could be used for unrestricted irrigation (2.2 TC/100 ml, US.EPA 1992). The improvement was better if coagulants were used. The price for tertiary treatment (filtration + UV) would have been 0.036 Euro/m3 according to prices in 2001 in 22 Mm3/a. The investment cost needed for the filtration unit was 0.020 Euro/m3 (6%/15a). Filtration with coagulants is recommended in spite of its costs, since the low transmittance of unfiltered wastewater impairs the efficiency of the UV treatment.


2003 ◽  
Vol 48 (1) ◽  
pp. 77-85 ◽  
Author(s):  
X.-D. Hao ◽  
M.C.M. van Loosdrecht

Water problems have to be solved in an integrated way, and sustainability has become a major issue. For this reason, developing more sustainable wastewater treatment processes is needed. New discoveries and good understanding on microbial conversions of nitrogen and phosphorus make more sustainable processes possible. New options for decentralized sustainable sanitation are generally compared to conventional sewage systems, we think that for a proper comparison also innovative centralized treatment schemes should be evaluated. In this article, a more sustainable WWTP is proposed for municipal wastewater treatment, mainly based on the principles of denitrifying dephosphatation and anaerobic ammonium oxidation (ANAMMOX). The proposed system consists of a first stage of the A/B process in which maximal sludge production is achieved. In this way, COD is regained as sludge for methanation. The following BCFS® and CANON processes can remove N and P with minimal or no COD need. As a potential fertiliser, struvite can easily be removed from the sludge water by adding magnesium compounds. A case study is done on the basis of the mass balance over the proposed plant. The effluent from the system has a good quality to be recycled. This could also make a contribution to meeting the world's water needs and lessening the impact on the world's water environment. Since all the separate units are already applied or tested on pilot-scale, no problems for technical implementation are foreseen.


Sign in / Sign up

Export Citation Format

Share Document