Effect of selective organic fractions on denitrification rates using Salsnes Filter as primary treatment

2014 ◽  
Vol 69 (9) ◽  
pp. 1942-1948 ◽  
Author(s):  
V. A. Razafimanantsoa ◽  
L. Ydstebø ◽  
T. Bilstad ◽  
A. K. Sahu ◽  
B. Rusten

The purpose of this project was to investigate the effect of selective particle removal during primary treatment on downstream biological nutrient removal processes. Bench-scale Salsnes Filter fine mesh sieves were used as a primary treatment to obtain different organic fractions to test the effect on denitrification. Activated sludge and moving bed biofilm reactor anoxic tests were performed on municipal wastewater collected from two full-scale wastewater treatment plants located around the Oslo region (Norway). About 43% of the suspended solids in the wastewater was less than 18 μm, and 14% was between 18 and 150 μm. The effect of particulate chemical oxygen demand (COD) removal on denitrification rates was very minor.

2020 ◽  
Vol 15 (2) ◽  
pp. 515-527
Author(s):  
L. Desa ◽  
P. Kängsepp ◽  
L. Quadri ◽  
G. Bellotti ◽  
K. Sørensen ◽  
...  

Abstract Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000–25,000 m3/d) and total suspended solids (TSS) (50–300 mg/L after primary treatment) the effluent quality fulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.


2006 ◽  
Vol 54 (10) ◽  
pp. 31-38 ◽  
Author(s):  
B. Rusten ◽  
H. Ødegaard

Fine mesh sieve technologies were tested in full scale at several municipal wastewater treatment plants. A screening test was used to characterize wastewater and establish the design criteria for the sieves. To achieve high removal efficiencies it was crucial to operate the sieves with a filter mat. Rotating belt sieves performed best in the full-scale tests. A small dose of cationic polymer and a static flocculator ahead of a rotating belt sieve achieved excellent results on a wastewater that was originally found unsuitable for primary treatment with fine mesh sieves. Simple screw presses dewatered the sludge from the sieves to typically 25–30% total solids. Using fine mesh sieves with <500 microns openings was found to normally be the most economical process for primary treatment.


2021 ◽  
Vol 83 (6) ◽  
pp. 1418-1428
Author(s):  
Avery L. Carlson ◽  
Huanqi He ◽  
Cheng Yang ◽  
Glen T. Daigger

Abstract Mathematical modelling was used to investigate the possibility to use membrane aerated biofilm reactors (MABRs) in a largely anoxic suspended growth bioreactor to produce the nitrate-nitrogen required for heterotrophic denitrification and the growth of denitrifying phosphorus accumulating organisms (DPAOs). The results indicate that such a process can be used to achieve a variety of process objectives. The capture of influent biodegradable organic matter while also achieving significant total inorganic nitrogen (TIN) removal can be achieved with or without use of primary treatment by operation at a relatively short suspended growth solids residence time (SRT). Low effluent TIN concentrations can also be achieved, irrespective of the influent wastewater chemical oxygen demand (COD)/total nitrogen (TN) ratio, with somewhat larger suspended growth SRT. Biological phosphorus and nitrogen removal can also be effectively achieved. Further experimental work is needed to confirm these modelling results.


2013 ◽  
Vol 69 (3) ◽  
pp. 560-565 ◽  
Author(s):  
Bjarne Paulsrud ◽  
Bjørn Rusten ◽  
Bjørn Aas

The objective of this study was to compare some basic characteristics of sludge from fine mesh sieves (sieve sludge) with sludge from primary clarifiers (primary sludge) regarding their energy potential with a focus on anaerobic digestion and/or incineration. Nineteen samples of sludge from fine mesh sieve plants (most of them without fine screens and grit chambers as pre-treatment) and 10 samples of primary sludge were analysed for the content of dry solids (DS), volatile solids (VS), chemical oxygen demand (COD), calorific value and methane potential. The results demonstrated that the sieve sludges have significantly higher VS content and higher methane potential than primary sludges, clearly indicating an increased sludge energy potential if fine mesh sieves are used for primary treatment instead of primary clarifiers at wastewater treatment plants with anaerobic digesters. If the sludges from primary treatment are to be incinerated or used as fuel in cement kilns, there is no significant difference in energy potential (given as calorific values) for the two types of primary treatment.


2019 ◽  
Vol 79 (3) ◽  
pp. 458-465
Author(s):  
V. A. Razafimanantsoa ◽  
D. Adyasari ◽  
A. K. Sahu ◽  
B. Rusten ◽  
T. Bilstad ◽  
...  

Abstract The goal of this study was to investigate what kind of impact the removal of particulate organic matter with 33μm rotating belt filter (RBF) (as a primary treatment) will have on the membrane bioreactor (MBR) performance. Two small MBR pilot plants were operated in parallel, where one train treated 2mm screened municipal wastewater (Train A) and the other train treated wastewater that had passed through a RBF with a 33μm filter cloth (Train B). The RBF was operated without a filter mat on the belt. About one third of the organic matter was removed by the fine mesh filter. The assessment of the overall performance showed that the two pilot plants achieved approximately the same removal efficiencies with regard to total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus and total nitrogen. It was also observed that the system with 33μm RBF as a primary treatment produced more sludge, which could be used for biogas production, and required about 30% less aeration downstream. Transmembrane pressure was significantly lower for the train receiving 33μm primary treated wastewater compared to the control receiving 2mm screened wastewater.


2015 ◽  
Vol 73 (2) ◽  
pp. 337-344 ◽  
Author(s):  
B. Rusten ◽  
V. A. Razafimanantsoa ◽  
M. A. Andriamiarinjaka ◽  
C. L. Otis ◽  
A. K. Sahu ◽  
...  

The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10–15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.


2018 ◽  
Vol 78 (7) ◽  
pp. 1566-1575 ◽  
Author(s):  
S. S. Rathnaweera ◽  
B. Rusten ◽  
K. Korczyk ◽  
B. Helland ◽  
E. Rismyhr

Abstract A pilot-scale CFIC® (continuous flow intermittent cleaning) reactor was run in anoxic conditions to study denitrification of wastewater. The CFIC process has already proven its capabilities for biological oxygen demand removal with a small footprint, less energy consumption and low cost. The present study focused on the applicability for denitrification. Both pre-denitrification (pre-DN) and post-denitrification (post-DN) were tested. A mixture of primary treated wastewater and nitrified wastewater was used for pre-DN and nitrified wastewater with ethanol as a carbon source was used for post-DN. The pre-DN process was carbon limited and removal rates of only 0.16 to 0.74 g NOx-N/m²-d were obtained. With post-DN and an external carbon source, 0.68 to 2.2 g NO3-Neq/m²-d removal rates were obtained. The carrier bed functioned as a good filter for both the larger particles coming with influent water and the bio-solids produced in the reactor. Total suspended solids removal in the reactor varied from 20% to 78% (average 45%) during post-DN testing period and 9% to 70% (average 29%) for pre-DN. The results showed that the forward flow washing improves both the DN function and filtration ability of the reactor.


Sign in / Sign up

Export Citation Format

Share Document