scholarly journals Residual sugar from microalgae biomass harvested from phycoremediation of swine wastewater digestate

2019 ◽  
Vol 79 (11) ◽  
pp. 2203-2210
Author(s):  
William Michelon ◽  
Mateus Pirolli ◽  
Melissa Paola Mezzari ◽  
Hugo Moreira Soares ◽  
Márcio Luís Busi da Silva

Abstract The present study assessed the carbohydrate and sugar production from Chlorella spp. biomass harvested from a field scale reactor simulating phycoremediation of swine wastewater. The microalgae biomass was mainly composed by (%): carbohydrates (41 ± 0.4), proteins (50 ± 0.4), and lipids (1.3 ± 0.5). The residual sugar present in the biomass was extracted via acid hydrolysis. Among different concentrations of sulfuric acid tested (i.e., 47, 94, 188, 281 and 563 mM), significantly higher sugar content was obtained with 188 mM (0.496 g-sugar g−1 microalgae-DW). The concentration of sugar present in the microalgae did not differ significantly between the biomasses harvested by either centrifugation or coagulation-flocculation. Two commercially available strains of yeast (i.e., Saccharomyces cerevisiae and S. cerevisiae chardonnay) were tested for their capability to ferment sugar from lyophilized microalgae biomass. S. cerevisiae chardonnay showed a significantly faster consumption of sugar during the exponential growth phase. Both strains of yeast were capable of consuming most of the sugar added ≅ 8 g L−1 within 24 h. Overall, the results suggest that carbohydrate-rich microalgae biomass obtained from the phycoremediation of swine wastewaters can play an important role in green design for industries seeking alternative sources of feedstock rich in sugar.

2019 ◽  
Vol 31 (12) ◽  
pp. 2885-2890
Author(s):  
Pallavi S. Patil ◽  
Umesh B. Deshannavar

In the present study, four Saccharomyces cerevisiae strains S. cerevisiae (NCIM 3200), S. cerevisiae (NCIM 3045), S. cerevisiae (baker′s yeast) and S. cerevisiae (EC1118) have been used and compared for their capability to ferment sugars from the juice of sugarcane (of variety CO 86032) for production of sugarcane wine. The growth pattern of each strain was studied followed by the fermentation at optimized conditions such as pH and temperature. The strains′ potential to produce sugarcane wine has been compared in terms of their sugar consumption, alcohol production, titrable acidity and volatile acidity production with respect to permissible amounts given by Indian Regulations. Saccharomyces cerevisiae (EC1118) performed better in fermentation among other compared Saccharomyces strains at the optimum temperature of 28 ºC, optimum pH 5, total soluble solids of 18 ºBrix and total sugar content of 185 g/L. Analysis of sugarcane wine fermented by Saccharomyces cerevisiae (EC1118) has pH, 3.57, total alcohol content, 13.55 ± 1.77 %, titrable acidity, 8.30 ± 0.01 g/L and volatile acidity, 0.84 ± 0.00 g/L. The overall acceptability from sensory analysis supports the above physico-chemical analysis results of sugarcane wine.


2019 ◽  
Vol 7 (11) ◽  
pp. 492 ◽  
Author(s):  
Nadine Feghali ◽  
Warren Albertin ◽  
Edouard Tabet ◽  
Ziad Rizk ◽  
Angela Bianco ◽  
...  

The study of yeast biodiversity represents an important step in the preservation of the local heritage, and this work in particular has an innovative character since no further studies have investigated ‘Merwah’, one of the main grape varieties used in winemaking in Lebanon. To gain deeper knowledge of the genetic diversity and population structure of native Saccharomyces cerevisiae wine strains, 202 isolates were collected during spontaneous alcoholic fermentation of eight must/wine samples of cultivar ‘Merwah’, over two consecutive years (2016, 2017) in a traditional winery in Mount Lebanon (1400 m a.s.l.). The isolates were identified as S. cerevisiae on the basis of their morphology and preliminary sequence analysis of their internal transcribed spacer (ITS) PCR. They were then characterised at the strain level by interdelta PCR and genotyped using multiplex PCR reactions of 12 microsatellite markers. High genetic diversity was observed for the studied population. To select potential yeast starter strains from this population, micro-fermentations were carried out for 22 S. cerevisiae strains that were selected as representative of the ‘Merwah’ wine yeast population in order to determine their technological and oenological properties. Three indigenous yeast strains might represent candidates for pilot-scale fermentation in the winery, based on relevant features such as high fermentation vigour, low production of volatile acidity and H2S and low residual sugar content at the end of alcoholic fermentation.


1989 ◽  
Vol 9 (4) ◽  
pp. 1659-1666 ◽  
Author(s):  
P K Hwang ◽  
S Tugendreich ◽  
R J Fletterick

In yeast cells, the activity of glycogen phosphorylase is regulated by cyclic AMP-mediated phosphorylation of the enzyme. We have previously cloned the gene for glycogen phosphorylase (GPH1) in Saccharomyces cerevisiae. To assess the role of glycogen and phosphorylase-catalyzed glycogenolysis in the yeast life cycle, yeast strains lacking a functional GPH1 gene or containing multiple copies of the gene were constructed. GPH1 was found not to be an essential gene in yeast cells. Haploid cells disrupted in GPH1 lacked phosphorylase activity and attained higher levels of intracellular glycogen but otherwise were similar to wild-type cells. Diploid cells homozygous for the disruption were able to sporulate and give rise to viable ascospores. Absence of functional GPH1 did not impair cells from synthesizing and storing trehalose. Increases in phosphorylase activity of 10- to 40-fold were detected in cells carrying multiple copies of GPH1-containing 2 microns plasmid. Northern (RNA) analysis indicated that GPH1 transcription was induced at the late exponential growth phase, almost simultaneous with the onset of intracellular glycogen accumulation. Thus, the low level of glycogen in exponential cells was not primarily maintained through regulating the phosphorylation state of a constitutive amount of phosphorylase. GPH1 did not appear to be under formal glucose repression, since transcriptional induction occurred well in advance of glucose depletion from the medium.


2011 ◽  
Vol 347-353 ◽  
pp. 2541-2544
Author(s):  
Benjarat Laobussararak ◽  
Warawut Chulalaksananukul ◽  
Orathai Chavalparit

This study was to investigate the fermentation of rice straw using various microorganisms, i.e., the bacterium Zymomonas mobilis, a distillery yeast Saccharomyces cerevisiae and a co-culture of Zymomonas mobilis and Saccharomyces cerevisiae. Rice straw was pretreated with alkaline and followed by enzymatic hydrolysis using cellulase before fermentation by the bacterium and a distillery yeast. Results show that alkali pretreatment is appropriate for rice straw since this pretreatment condition can produce the maximum cellulose of 88.96% and reducing sugar content of 9.18 g/l. Furthermore, the ethanol yield after enzymatic hydrolysis (expressed as % theoretical yield) was 15.94-19.73% for the bacterium, 20.48-35.70% for yeast and 21.56-29.89% for co-culture. Therefore, the distillery yeast was a suitable microorganism for ethanol production from rice straw.


1969 ◽  
Vol 62 (1) ◽  
pp. 48-55
Author(s):  
M. Pérez-Zapata ◽  
G. Ramírez-Oliveras ◽  
C. González-Molina

The performance of 34 new sugarcane varieties was evaluated in a plant crop and two ratoons at two sites in southwestern Puerto Rico. At Bonilla farm in Cabo Rojo the five leading varieties were PR 65-413, PR 65-339, PR 62-739, UCW 53-69, and PR 980. PR 980, which is the leading commercial variety of the Cabo Rojo area, ranked fifth in total sugar production per acre. PR 65-413 and PR 65-339 have the greatest potential as commercial varieties for the Cabo Rojo area, since they are high sugar yielders and suited to mechanization. In the humid valley of Central Eureka in Hormigueros, the most outstanding varieties were PR 1152, PR 61-902, PR 1140, CP 52-43, and NCo 310. PR 1152 is high in sugar content and cane tonnage production, and is suitable for mechanized harvesting. PR 1140 and PR 61-902 also had a good sucrose content, but their performance in subsequent crops was poor. NCo 310 and UCW 53-69 are not suitable for mechanized harvesting.


2021 ◽  
Vol 10 (16) ◽  
pp. e53101622986
Author(s):  
Camilla Mariane Menezes Souza ◽  
Taís Silvino Bastos ◽  
Marley Conceição dos Santos

Looking for alternative sources in animal nutrition, microalgae began to be explored, gaining space in commercial production. The aim of this review is to present available information about the use of microalgae in animal nutrition, as well as its effect and applications. Many microalgae are important sources of polyunsaturated fatty acids (PUFA), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These PUFA is poorly synthesized by animals, so they should be included in their diet. In addition, they are a rich source of almost all of the important minerals as well as vitamins. Additionally, some microalgae generally have a high protein content and high digestibility. In this context, microalgae already available on the market, become an alternative replacing conventional ingredients. To our knowledge, the use of small amounts of microalgae biomass in the feed can benefit the physiology of the animals, improving the immune response, resistance to diseases, antiviral and antibacterial action, intestinal function, and stimulation of probiotic colonization. In general, the addition of these compounds to the diets of animals enhances their overall health and immune status, productivity, and the quality and stability of the resulting animal products. Although the use of microalgae is increasingly directed towards many types of animals: cats, dogs, ornamental fish, horses, poultry, swine, sheep, and cow, studies still need to be explored.


2020 ◽  
Vol 153 (1) ◽  
pp. 59-66
Author(s):  
Thomas Mione ◽  
Isaac Argeo Diaz

Background and aims – Flowers of Jaltomata quipuscoae (Solanaceae) secrete blood-red nectar that serves as an energy reward and possible attractant to pollinators. The purposes of this study were to determine whether simulated pollinator visits (manual removal of nectar) stimulates replenishment of nectar, and report the pattern of nectar presentation during the lifespan of the flower. Methods – For the nectar replenishment experiments flowers were paired: each pair of flowers was selected to be on the same plant and at the same developmental stage. From all 62 flowers nectar was removed and discarded (not measured) at time zero. Then, over a period of eight hours, the nectar of one flower was measured four times, i.e., every two hours, while nectar of the paired control flower was measured only at the end of the eight-hour period. In the nectar dynamics experiment five sets of flowers received different treatments: flowers were unmanipulated for zero, one, two, three or four days and then nectar was removed once every day. The volume of nectar produced and concentration of sugar in the nectar were recorded at each extraction for both studies.Key results – In the nectar replenishment study significantly higher nectar volume and consequently significantly higher total sugar content was present in the experimental nectar-extracted flowers. In the nectar dynamics study, nectar was produced starting on day one or two, continuously through the life of the open flowers until one or two days before the corolla senesced. Delay of nectar removal from different flower sets for zero, one, two, three or four days resulted in a linear increase in nectar volume and total nectar sugar production, and had little or no effect on the cumulative (life of the flower) nectar production. Floral longevity, seven to ten days, was not affected by a single removal of nectar each day.Conclusions – The floral nectary of J. quipuscoae responded to nectar removal by secreting more nectar, and thus more total sugar (not a higher concentration of sugar) than was secreted by control flowers. In flowers from which nectar was not removed, nectar volume and thus total sugar secreted continued to accumulate linearly, suggesting that reabsorption of nectar either does not occur or is slow relative to the rate of secretion. The more we (or pollinators) take, the more the flowers make: the volume of nectar and sugar production increase if nectar is removed frequently but not if nectar is removed infrequently.


Author(s):  
Linhe Sun ◽  
Huijun Zhao ◽  
Jixiang Liu ◽  
Bei Li ◽  
Yajun Chang ◽  
...  

The rapid growth of the livestock and poultry industries has resulted in the production of a large amount of wastewater, and the treatment of this wastewater requires sustainable and environmentally friendly approaches such as phytoremediation. A substrate-free floating wetland planted with water dropwort (Oenanthe javanica), a common vegetable in Southeast China, was constructed to purify a lagoon with anaerobically and aerobically treated swine wastewater in Suqian, China. The average removal rates of total nitrogen, ammonium nitrogen, nitrite nitrogen, and chemical oxygen demand were 79.96%, 95.04%, 86.14%, and 59.91%, respectively, after 40 days of treatment. A total of 98.18 g∙m−2 nitrogen and 19.84 g∙m−2 phosphorus were absorbed into plants per harvest through the rapid growth of water dropwort biomass, and the nitrogen accumulation ability was similar to that observed of other plants, such as water hyacinth. In addition, the edible part of water dropwort was shown to comply with the Chinese National Food Sanitation Standards and be safe for human consumption. Its low soluble sugar content also makes it a suitable addition to the daily diet. Overall, substrate-free floating constructed wetlands planted with water dropwort could be more widely used for livestock wastewater purification and could be integrated with plant–livestock production in China because of its high removal efficiency and recycling utilization of water dropwort biomass.


2016 ◽  
Vol 3 (3) ◽  
pp. 107
Author(s):  
Wagiman . ◽  
Makhmudun Ainuri ◽  
Rinda Gusvita ◽  
Jumeri .

<p>The aim of this research was study of E. cottonii to produce bioethanol fermentation substrate with a high reduction sugar content and low Hidroxymethilfurfural (HMF). Fermentation done by instant yeast and Saccharomyces cerevisiae culture of FNCC 3012.The best treatment was obtained in the combination of 2% of H2SO4 by time reaction of 120 minutes in 80°C produced 15.61 g/l reducing sugar and 5.03 g/l HMF. In fermented process, the hydrolysate with instant yeast starter delivered much more efficiency in 3.63 ml CO2 volume, 87.53% in fermentation efficiency, and 1.96 g/l reducing sugar on fifth day of fermentation. <br /><strong>Keywords</strong>: bioethanol, Eucheuma cottonii, fermentation, hydrolysis, process design</p>


2012 ◽  
pp. 1492-1494
Author(s):  
Leonardo García ◽  
Xavier Álvarez ◽  
Kenya Bravo ◽  
Juan Peralta ◽  
Alfredo Barriga

Sign in / Sign up

Export Citation Format

Share Document