scholarly journals Preparation of a hydrophobically associated cationic polyacrylamide and its regulation of the sludge dewatering performance

2020 ◽  
Vol 82 (7) ◽  
pp. 1350-1369
Author(s):  
Xin Feng ◽  
Jinchuan Deng ◽  
Junjie Wan ◽  
Jinqiang He ◽  
Zhenjun Huang ◽  
...  

Abstract A hydrophobically associating cationic polyacrylamide (HACPAM) was prepared by using a micellar polymerization method with V-50 (azobisisobutyramidine hydrochloride) as the initiator and acrylamide, acryloyloxyethyl trimethylammonium chloride and butyl methacrylate as substrates under ultraviolet light irradiation. Structural analysis using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and X-ray photoelectron spectroscopy analyses showed that the substrates were successfully polymerized. HACPAM was used to condition sludge to improve its dewatering performance, and the results showed that as the amount of HACPAM increases, the sludge dewatering performance is significantly improved, and 3.532 kg/t dry solids of HACPAM is regarded as the optimal amount. Compared with the commercially available cationic polyacrylamide (CPAM), HACPAM has a stronger hydrophobic group association effect, with better promotion of the conversion of bound water in sludge flocs into free water, thereby improving the sewage dewatering performance. The 3D spatial structure of dewatered sludge cakes analyzed by computed tomography technology showed that the number of pores of the dewatered sludge cake treated by HACPAM 3 was smaller than that of the cake treated by CPAM, with a reduction in the porosity of 68.8%, resulting in a better hydrophobic effect. In addition, the mechanism of HACPAM improving the dewatering performance is discussed.

BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 7375-7386
Author(s):  
Feng Lin ◽  
Jigeng Li ◽  
Xiaolin Zhu ◽  
Peiran Yu ◽  
Mengru Liu

The effects of lysozyme (LZM) and freeze-thaw conditioning, alone or in combination, on sludge dewatering performance were comparatively investigated. After the optimization of the dewatering conditions using response surface methodology (RSM), the co-conditioning exhibited obvious superiority to the separate conditioning in improving the dewaterability of municipal sludge, with the capillary suction time (CST) and the water content (W) of the dewatered sludge reduced to 12 ± 0.5 s and 52.0% ± 0.4% from 61.8 s and 73.0%, respectively. The co-conditioning appeared not only to destroy the structure of extracellular polymeric substance (EPS) and microbial cell wall by virtue of enzymatic conditioning, but it formed larger particles and compact sludge floc structure with the help of freeze-thaw conditioning. Additionally, the bound water content of sludge decreased by 47.5% after co-conditioning, consistent with the enhancement in sludge dewaterability. All the results showed that LZM in combination with freeze-thaw conditioning had a great potential in sludge reduction, providing more opportunity of resource utilization for the dewatered sludge.


2016 ◽  
Vol 13 (123) ◽  
pp. 20160554 ◽  
Author(s):  
Jiapeng Hou ◽  
Deepak H. Veeregowda ◽  
Joop de Vries ◽  
Henny C. Van der Mei ◽  
Henk J. Busscher

Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of –O and =O functionalities, while Si crystal and quartz surfaces solely possessed –O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between –O and =O functionalities.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 296
Author(s):  
Mashaalah Zarejousheghani ◽  
Alaa Jaafar ◽  
Hendrik Wollmerstaedt ◽  
Parvaneh Rahimi ◽  
Helko Borsdorf ◽  
...  

Molecularly imprinted polymers have emerged as cost-effective and rugged artificial selective sorbents for combination with different sensors. In this study, quaternary ammonium cations, as functional monomers, were systematically evaluated to design imprinted polymers for glyphosate as an important model compound for electrically charged and highly water-soluble chemical compounds. To this aim, a small pool of monomers were used including (3-acrylamidopropyl)trimethylammonium chloride, [2-(acryloyloxy)ethyl]trimethylammonium chloride, and diallyldimethylammonium chloride. The simultaneous interactions between three positively charged monomers and glyphosate were preliminary evaluated using statistical design of the experiment method. Afterwards, different polymers were synthesized at the gold surface of the quartz crystal microbalance sensor using optimized and not optimized glyphosate-monomers ratios. All synthesized polymers were characterized using atomic force microscopy, contact angle, Fourier-transform infrared, and X-ray photoelectron spectroscopy. Evaluated functional monomers showed promise as highly efficient functional monomers, when they are used together and at the optimized ratio, as predicted by the statistical method. Obtained results from the modified sensors were used to develop a simple model describing the binding characteristics at the surface of the different synthesized polymers. This model helps to develop new synthesis strategies for rational design of the highly selective imprinted polymers and to use as a sensing platform for water soluble and polar targets.


2014 ◽  
Vol 665 ◽  
pp. 404-407 ◽  
Author(s):  
Wan Yu ◽  
Pei Sheng Li

Moisture distribution in sewage sludge was considered as the essential of thermal drying. Some methods were given in literatures to test the moisture distribution, but there was no standard method to determine the critical water content between different kinds of water. The municipal sewage sludge was dried by hot air in this work. Based on the drying curve, the derivative of drying rate with respect to dry basis moisture content was brought out to analyze the moisture distribution in sewage sludge. Results show that this method can easily determine the free water, interstitial water, surface water and bound water with a high accuracy. The present work can provide new insight to determine the moisture distribution in sewage sludge, which was still lacking in the literatures.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 979 ◽  
Author(s):  
Chunfang Zhu ◽  
Haitao Yang ◽  
Hongbo Liang ◽  
Zhengyue Wang ◽  
Jun Dong ◽  
...  

Low surface energy materials have attracted much attention due to their properties and various applications. In this work, we synthesized and characterized a series of ultraviolet (UV)-curable fluorinated siloxane polymers with various fluorinated acrylates—hexafluorobutyl acrylate, dodecafluoroheptyl acrylate, and trifluorooctyl methacrylate—grafted onto a hydrogen-containing poly(dimethylsiloxane) backbone. The structures of the fluorinated siloxane polymers were measured and confirmed by proton nuclear magnetic resonance and Fourier transform infrared spectroscopy. Then the polymers were used as surface modifiers of UV-curable commercial polyurethane (DR-U356) at different concentrations (1, 2, 3, 4, 5, and 10 wt %). Among three formulations of these fluorinated siloxane polymers modified with DR-U356, hydrophobic states (91°, 92°, and 98°) were obtained at low concentrations (1 wt %). The DR-U356 resin is only in the hydrophilic state at 59.41°. The fluorine and siloxane element contents were investigated by X-ray photoelectron spectroscopy and the results indicated that the fluorinated and siloxane elements were liable to migrate to the surface of resins. The results of the friction recovering assays showed that the recorded contact angles of the series of fluorinated siloxane resins were higher than the original values after the friction-annealing progressing.


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 537-555 ◽  
Author(s):  
M. E. T. Quinquis ◽  
S. J. H. Buiter

Abstract. Subduction of oceanic lithosphere brings water into the Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in the lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, computational models use different numerical schemes to simulate the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three simple migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the flow of the solid phase; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is a function of the pressure gradient caused by the difference in density between water and the surrounding rocks. In addition, the flow of the solid material field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple model that simulates the sinking of a cold, hydrated cylinder into a dry, warm mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models demonstrate that the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a bound water-dependent creep flow law results in a broader area of hydration in the mantle wedge, which feeds back to the dynamics of the system by the associated weakening. This finding underlines the importance of using dynamic time evolution models to investigate the effects of (de)hydration. We also show that hydrated material can be transported down to the base of the upper mantle at 670 km. Although (de)hydration processes influence subduction dynamics, we find that the exact numerical implementation of free water migration is not important in the basic schemes we investigated. A simple implementation of water migration could be sufficient for a first-order impression of the effects of water for studies that focus on large-scale features of subduction dynamics.


Holzforschung ◽  
2007 ◽  
Vol 61 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Frances L. Walsh ◽  
Sujit Banerjee

Abstract A new technique for measuring the monolayer water content of fiber is presented. Tritiated water is added to a pulp/water suspension, whereupon the tritium partitions between the bulk water and the pulp. In the pulp phase the tritium can exchange with free water, bound water, and with hydroxyl and other protons present in the pulp matrix. The free water in the pulp is then removed by displacement with acetone. The tritium remaining in the pulp is mostly associated with tightly bound water, with a small fraction being tied up with the exchangeable hydrogen in pulp. The procedure provides a value of 10% for the tightly bound water content of hardwood or softwood fiber, either bleached or unbleached. If this water is assumed to cover the fiber surface as a monolayer, then an estimate of the wet surface area of the fiber can be obtained. This estimate compares well with independent measurements of surface area.


1988 ◽  
Vol 66 (11) ◽  
pp. 1186-1199 ◽  
Author(s):  
Ivan L. Cameron ◽  
Virginia A. Ord ◽  
Gary D. Fullerton

The proton nuclear magnetic resonance (NMR) titration method (which requires measurement of the relaxation rate at multiple measured levels of dehydration) was applied to the analysis of human erythrocytes, a hemoglobin solution, plasma, and serum. The results allowed identification of bulk water and four motionally perturbed water of hydration subfractions. Based on previous NMR studies of homopolypeptides we designated these subfractions as superbound, irrotationally bound, rotationally bound, and structured. The total water of hydration (sum of both structured and bound water subfractions) in plasma, serum, and hemoglobin ranged from 2.78 to 3.77 g H2O/g dry mass and the sum of the three bound water subfractions ranged from 1.23 to 1.72 g H2O/g dry mass. The total water of hydration on hemoglobin, as determined by (i) spin-lattice (T1) and spin-spin (T2) NMR data, (ii) quench ice-crystal imprint size, (iii) calculations based on osmotic pressure data, and (iv) two other methods, ranged from 2.26 to 3.45 g H2O/g dry mass. In contrast, the estimates of total water of hydration in the intact erythrocyte ranged from 0.34 to 1.44 g H2O/g dry mass, as determined by osmotic activity and spin-lattice titration, respectively. Studies on the magnetic-field dependence of the spin-lattice relaxation rate (1/T1ρ) of solvent water nuclei in protein solutions and in intact and disrupted erythrocytes indicated that hemoglobin aggregation exists in the intact erythrocytes and that erythrocyte disruption decreases the extent of hemoglobin aggregation. Together, the present and past data indicate that the extent of water of hydration associated with hemoglobin depends on the amount of salt present and the degree of aggregation of the hemoglobin molecules.


Sign in / Sign up

Export Citation Format

Share Document