scholarly journals Anodic oxidation of Bisphenol A (BPA) by different dimensionally stable (DSA) electrodes

Author(s):  
Orhan T. Can ◽  
Muhammed M. Tutun ◽  
Ramazan Keyikoglu

Abstract Bisphenol A (BPA) is a known endocrine disrupter and was detected in surface waters. We investigated the mineralization of BPA by electrochemical oxidation. Six different types of electrodes including the boron-doped diamond (BDD), platinum (Pt), and mixed metal oxide (MMO) electrodes; RuO2-IrO2, RuO2-TiO2, IrO2-Ta2O5, and Pt-IrO2 were compared as the anode material. Total organic carbon (TOC) was performed to monitor the mineralization efficiency of BPA. BDD achieved 100% BPA mineralization efficiency in 180 min and at a current density of 125 mA/cm2. Whereas the TOC removal efficiency of Pt was 60.9% and the efficiency of MMO electrodes ranged between 48 and 54%. BDD exhibited much lower specific energy consumption (SEC), which corresponds to a lower energy cost (63.4 $/kg TOC). The effect of operational parameters showed that the BDD anode was much more affected by the current density, initial BPA concentration, and electrolyte concentration than the other parameters such as the stirring speed and interelectrode distance.

2020 ◽  
Vol 81 (5) ◽  
pp. 925-935 ◽  
Author(s):  
Dongtian Miao ◽  
Guoshuai Liu ◽  
Qiuping Wei ◽  
Naixiu Hu ◽  
Kuangzhi Zheng ◽  
...  

Abstract In this paper, boron-doped diamond (BDD) electro-activated persulfate was studied to decompose malachite green (MG). The degradation results indicate that the decolorization performance of MG for the BDD electro-activated persulfate (BDD-EAP) system is 3.37 times that of BDD electrochemical oxidation (BDD-EO) system, and BDD-EAP system also exhibited an enhanced total organic content (TOC) removal (2.2 times) compared with BDD-EO system. Besides, the degradation parameters such as persulfate concentration, current density, and pH were studied in detail. In a wider range of pH (2–10), the MG can be efficiently removed (>95%) in 0.02 M persulfate solution with a low current density of 1.7 mA/cm2 after 30 min. The BDD-EAP technology decomposes organic compounds without the diffusion limitation and avoids pH adjustment, which makes the EO treatment of organic wastewater more efficient and more economical.


2020 ◽  
Vol 82 (4) ◽  
pp. 773-786
Author(s):  
Hao Li ◽  
Xinmou Kuang ◽  
Congping Qiu ◽  
Xiaolan Shen ◽  
Botao Zhang ◽  
...  

Abstract Petrochemical wastewater is difficult to process because of various types of pollutants with high toxicity. With the improvement in the national discharge standard, traditional biochemical treatment methods may not meet the standards and further advanced treatment techniques would be required. In this study, electrochemical oxidation with boron doped diamond (BDD) anode as post-treatment was carried out for the treatment of real biotreated petrochemical wastewater. The effects of current density, pH value, agitation rate, and anode materials on chemical oxygen demand (COD) removal and current efficiency were studied. The results revealed the appropriate conditions to be a current density of 10 mA·cm−2, a pH value of 3, and an agitation rate of 400 rpm. Moreover, as compared with the graphite electrode, the BDD electrode had a higher oxidation efficiency and COD removal efficiency. Furthermore, GC-MS was used to analyze the final degradation products, in which ammonium chloride, formic acid, acetic acid, and malonic acid were detected. Finally, the energy consumption was estimated to be 6.24 kWh·m−3 with a final COD of 30.2 mg·L−1 at a current density of 10 mA·cm−2 without the addition of extra substances. This study provides an alternative for the upgrading of petrochemical wastewater treatment plants.


2016 ◽  
Vol 74 (9) ◽  
pp. 2068-2074 ◽  
Author(s):  
E. Mousset ◽  
Z. Wang ◽  
O. Lefebvre

The removal of micropollutants is an important environmental and health issue. Electro-Fenton offers an electrochemical advanced treatment that is particularly effective for the breakdown of aromatic contaminants. Due to the wide variety of chemicals, it is preferable to analyze model contaminants, such as phenol, when optimizing and assessing the efficacy of a novel treatment process. In this study, we therefore made use of innovative types of electrode material and optimized operating parameters (current density and aeration rate) for the removal of phenol by electro-Fenton, with a view to maximize the energy efficiency of the process. By determining the best current density (1.25 mA cm−2), frequency of aeration (continuous) and by using a boron-doped diamond (BDD) anode, it was possible to achieve over 98.5% phenol (1 mM) removal within 1.5 h. BDD further outcompeted platinum as anode material in terms of mineralization rate and yield, and displayed low energy consumption of 0.08 kWh (g-TOC)−1, about one order of magnitude lower than other advanced oxidation processes, such as UV/TiO2 and UV/O3. Furthermore, a carbon cloth anode proved even more cost-effective than BDD if the end goal is the removal of phenol by electro-Fenton instead of complete mineralization.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1686 ◽  
Author(s):  
Carolin Heim ◽  
Mohamad Rajab ◽  
Giorgia Greco ◽  
Sylvia Grosse ◽  
Jörg E. Drewes ◽  
...  

The focus of this study was to investigate the efficacy of applying boron-doped diamond (BDD) electrodes in an electrochemical advanced oxidation process, for the removal of the target compound diclofenac (DCF) in different water matrices. The reduction of DCF, and at the same time the formation of transformation products (TPs) and inorganic by-products, was investigated as a function of electrode settings and the duration of treatment. Kinetic assessments of DCF and possible TPs derived from data from the literature were performed, based on a serial chromatographic separation with reversed-phase liquid chromatographyfollowed by hydophilic interaction liquid chromatography (RPLC-HILIC system) coupled to ESI-TOF mass spectrometry. The application of the BDD electrode resulted in the complete removal of DCF in deionized water, drinking water and wastewater effluents spiked with DCF. As a function of the applied current density, a variety of TPs appeared, including early stage products, structures after ring opening and highly oxidized small molecules. Both the complexity of the water matrix and the electrode settings had a noticeable influence on the treatment process’s efficacy. In order to achieve effective removal of the target compound under economic conditions, and at the same time minimize by-product formation, it is recommended to operate the electrode at a moderate current density and reduce the extent of the treatment.


Author(s):  
Alicia Garcia-Costa ◽  
André Savall ◽  
Juan A. Zazo ◽  
Jose A. Casas ◽  
Karine Groenen Serrano

Perfluorooctanoic acid (PFOA), C7F15COOH, has been widely employed over the past fifty years, causing an environmental problem due to its dispersion and low biodegradability. Furthermore, the high stability of this molecule, conferred by the high strength of the C-F bond makes it very difficult to remove. In this work, electrochemical techniques are applied for PFOA degradation in view to study the influence of the cathode on defluorination. For this purpose, boron doped diamond (BDD), Pt, Zr and stainless steel have been tested as cathodes working with BDD anode at low electrolyte concentration (3.5 mM) to degrade PFOA at 100 mg/L. Among these cathodic materials, Pt improves the defluorination reaction. The electro-degradation of a PFOA molecule starts by a direct exchange of one electron at the anode and then follows a complex mechanism involving reaction with hydroxyl radicals and adsorbed hydrogen on the cathode. It is assumed that Pt acts as an electrocatalyst, enhancing PFOA defluorination by the reduction reaction of perfluorinated carbonyl intermediates on the cathode. The defluorinated intermediates are then more easily oxidized by HO• radicals. Hence, high mineralization (xTOC: 76.1%) and defluorination degrees (xF-: 58.6%) were reached with Pt working at current density j = 7.9 mA/cm2. This BDD-Pt system reaches a higher efficiency in terms of defluorination for a given electrical charge than previous works reported in literature. Influence of the electrolyte composition and initial pH are also explored.


Author(s):  
Katelyn Sellgren ◽  
◽  
Christopher Gregory ◽  
Michael Hunt ◽  
Ashkay Raut ◽  
...  

Electrochemical disinfection has gained interest as an alternative to conventional wastewater treatment because of its high effectiveness and environmental compatibility. Two and a half billion people currently live without improved sanitation facilities. Our research efforts are focused on developing and implementing a freestanding, additive-free toilet system that treats and recycles blackwater on site. In this study, we sought to apply electrochemical disinfection to blackwater. We compared commercially available boron-doped diamond (BDD) and mixed metal oxide (MMO) electrodes for disinfection efficiency in E. coli–inoculated model wastewater. The MMO electrodes were found to be more efficient and thus selected for further study with blackwater. The energy required for disinfection by the MMO electrodes increased with the conductivity of the medium, decreased with increased temperature, and was independent of the applied voltage. Fecal contamination considerably increased the energy required for blackwater disinfection compared to model wastewater, demonstrating the need for testing in effluents representing the conditions of the final application.


2018 ◽  
Vol 2 (4) ◽  
pp. 045015 ◽  
Author(s):  
Dinesh Kumar ◽  
Shibnath Samanta ◽  
K Sethupathi ◽  
M S Ramachandra Rao

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Taisuke Kageura ◽  
Masakuni Hideko ◽  
Ikuto Tsuyuzaki ◽  
Aoi Morishita ◽  
Akihiro Kawano ◽  
...  

Abstract Superconducting quantum interference devices (SQUIDs) are currently used as magnetic flux detectors with ultra-high sensitivity for various applications such as medical diagnostics and magnetic material microstructure analysis. Single-crystalline superconducting boron-doped diamond is an excellent candidate for fabricating high-performance SQUIDs because of its robustness and high transition temperature, critical current density, and critical field. Here, we propose a fabrication process for a single-crystalline boron-doped diamond Josephson junction with regrowth-induced step edge structure and demonstrate the first operation of a single-crystalline boron-doped diamond SQUID above 2 K. We demonstrate that the step angle is a significant parameter for forming the Josephson junction and that the step angle can be controlled by adjusting the microwave plasma-enhanced chemical vapour deposition conditions of the regrowth layer. The fabricated junction exhibits superconductor–weak superconductor–superconductor-type behaviour without hysteresis and a high critical current density of 5800 A/cm2.


2019 ◽  
Vol 79 (5) ◽  
pp. 921-928 ◽  
Author(s):  
F. Agustina ◽  
A. Y. Bagastyo ◽  
E. Nurhayati

Abstract Electro-oxidation using a boron-doped diamond (BDD) anode can be used as an alternative to leachate treatment. Aside from the hydroxyl radical, BDDs are capable of generating chloride and sulfate radical species that play significant roles in the oxidation of pollutants. This research investigated the role of Cl−:SO42− ions at molar ratios of 237:1, 4:1 and 18:1, and the influence of applied current density (i.e. 50, 75 and 100 mA cm−2) on the removal of organic and ammonium contaminants. The results show that current density had considerable effects on chemical oxygen demand (COD) and colour removal, while ion composition of Cl−:SO42− at pH 3, 5 and 8.5 (original pH) gave different effects on COD and ammonium removal. The pH had a significant effect on the COD removal at the ratio of 237:1, but showed no dramatic effect at the ratio of 18:1, giving ∼40% of COD removal at all pHs tested. This indicates that electro-oxidation at the ratio of 18:1 could be effectively conducted at a wide range of pH. Furthermore, the optimum ammonium removal was obtained at pH 8.5 with the ratio of 237:1. This process was found to be ineffective in increasing the biodegradability index of the leachate; instead, it exhibited mineralization of organic content.


Sign in / Sign up

Export Citation Format

Share Document