scholarly journals Alkaline and acid solubilisation of waste activated sludge

Author(s):  
Tales Abreu Tavares de Sousa ◽  
Fernanda Patrício do Monte ◽  
José Vanderley do Nascimento Silva ◽  
Wilton Silva Lopes ◽  
Valderi Duarte Leite ◽  
...  

Abstract The influence of acidic and alkaline conditions on the solubilisation process of waste activated sludge (WAS) was investigated using HCl and NaOH at pH 2, 10, 11 and 12. The rise in concentration of solubilised compounds, the influence of reaction time, and the influence of the concentration of total solids (TS) during the solubilisation process were determined. Physical and chemical tests demonstrated that pre-treatment provided a release of compounds from the sludge floc matrix into the soluble fraction, characterising the solubilisation process. The highest degree of WAS solubilisation was observed when a pH of 12 was applied. Although largest effects were already attained after 0.25 h, WAS solubilisation continued reaching an increase in total dissolved solids by a factor 10.4 after 720 hrs. Under these conditions, the dissolved organic carbon (DOC), proteins, and carbohydrates resulted in releases up to 15, 40 and 41 times, respectively; and phosphorus increased 5.7 times. Results indicate that by applying alkaline pre-treatment, higher TS concentrations can be treated per reactor volume compared to non-pre-treated WAS. Aerobic and anaerobic biodegradability tests showed increased bioconversion potentials in full-scale treatment plants. The respirometry tests ratify the improvement in solubilisation, with O2 consumption rates increasing 1.4 times, concomitant with an additional 261 mg·L−1 of the COD used, which represents 90% bioconversion of waste activated sludge. Biomethanisation test indicated an increase of 3.6 times relative to the blank.

2018 ◽  
Vol 78 (8) ◽  
pp. 1772-1781 ◽  
Author(s):  
Hyungjun (Brian) Jo ◽  
Wayne Parker ◽  
Peiman Kianmehr

Abstract A range of thermal pretreatment conditions were used to evaluate the impact of high pressure thermal hydrolysis on the biodegradability of waste activated sludge (WAS) under aerobic and anaerobic conditions. It was found that pretreatment did not increase the overall extent to which WAS could be aerobically biodegraded. Thermal pretreatment transformed the biodegradable fraction of WAS (XH) to readily biodegradable chemical oxygen demand (COD) (SB) (16.5–34.6%) and slowly biodegradable COD (XB) (45.8–63.6%). The impact of pretreatment temperature and duration on WAS COD fractionation did not follow a consistent pattern as changes in COD solubilization did not correspond to the observed generation of SB through pretreatment. The pretreated WAS (PWAS) COD fractionations determined from aerobic respirometry were employed in anaerobic modeling and it was concluded that the aerobic and anaerobic biodegradability of PWAS differed. It was found that thermal pretreatment resulted in as much as 50% of the endogenous decay products becoming biodegradable in anaerobic digestion. Overall, it was concluded that the COD fractionation that was developed based upon the aerobic respirometry was valid. However, it was necessary to implement a first-order decay process that reflected changes in the anaerobic biodegradability of the endogenous products through pretreatment.


2014 ◽  
Vol 70 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mathijs Oosterhuis ◽  
Davy Ringoot ◽  
Alexander Hendriks ◽  
Paul Roeleveld

The thermal hydrolysis process (THP) is a sludge treatment technique which affects anaerobic biodegradability, viscosity and dewaterability of waste activated sludge (WAS). In 2011 a THP-pilot plant was operated, connected to laboratory-scale digesters, at the water board Regge en Dinkel and in cooperation with Cambi A.S. and MWH Global. Thermal hydrolysis of WAS resulted in a 62% greater volatile solids (VS) reduction compared to non-hydrolysed sludge. Furthermore, the pilot digesters could be operated at a 2.3 times higher solids loading rate compared to conventional sludge digesters. By application of thermal sludge hydrolysis, the overall efficiency of the sludge treatment process can be improved.


Sign in / Sign up

Export Citation Format

Share Document