scholarly journals Synthesis of Magnesium Silicate Hydrate as an Adsorbent for Different Dyes

2019 ◽  
Vol 35 (4) ◽  
pp. 1407-1413
Author(s):  
Pasinee Panith ◽  
Worawat Wattanathana ◽  
Wanchai Deeloed ◽  
Ratthapit Wuttisarn ◽  
Suttipong Wannapaiboon ◽  
...  

Magnesium silicate hydrate was synthesized for using as an adsorbent for different commercial organic dyes. X-ray diffraction (XRD) confirmed the crystalline phase of magnesium silicate hydrate. Some characteristic absorption bands of the magnesium silicate hydrate structure were observed in the Fourier transform infrared spectroscopy (FTIR) spectrum which supported the result identified from XRD data. Analysis of surface area and porosity by surface area analyzer showed that the synthesized magnesium silicate had high surface area of 634.63 m2/g and also showed the average BJH pore size of 3.72 nm. Insight into the sorption isotherm curve, the hysteresis characteristic was clearly observed suggesting a presence of mesopores within the obtained material. Dye adsorption study revealed that the synthesized adsorbent had the strongest affinity to the cationic dye (methylene blue) on account of the negative charge on the surface of the adsorbent. Hence, the adsorption of methylene blue was reached the equilibrium at the fastest time. In all, the results showed a possibility to apply this prepared magnesium silicate materials as a selective adsorbent for cationic dyes.

Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


RSC Advances ◽  
2014 ◽  
Vol 4 (85) ◽  
pp. 45244-45250 ◽  
Author(s):  
Yun Meng ◽  
Liyuan Zhang ◽  
Liyuan Chai ◽  
Wanting Yu ◽  
Ting Wang ◽  
...  

PmPD nanobelts with high adsorption performance have been synthesized by using CTAP as oxidants.


2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


2018 ◽  
Vol 768 ◽  
pp. 218-223
Author(s):  
Juan Xia ◽  
Lin Zhang ◽  
Qi Wang

Two different Bi-based semiconductor photocatalysts Bi2MoO6 and Bi2WO6 were synthesized by a simple one-pot hydrothermal reaction at 453 K for 10 h. The properties of the photocatalysts, including structures, morphology, light-absorption band and photoluminescence, etc were characterized by X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectrum and fluorescence spectrum. Further, their photocatalytic properties were compared by the degradation of two different organic dyes: Rhodamine B and methylene blue. It is important to note that the Bi2WO6 nanoplate structure exhibited better photocatalytic activity than the Bi2MoO6 nanowires aggregates due to its high surface area, higher light absorption and lower recombination of electron-hole pairs.


ACS Omega ◽  
2020 ◽  
Vol 5 (23) ◽  
pp. 13548-13556 ◽  
Author(s):  
Junhua Hou ◽  
Yijian Liu ◽  
Shikai Wen ◽  
Weitao Li ◽  
Riquan Liao ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (42) ◽  
pp. 24368-24376 ◽  
Author(s):  
Ajay Kumar Adepu ◽  
Srinath Goskula ◽  
Suman Chirra ◽  
Suresh Siliveri ◽  
Sripal Reddy Gujjula ◽  
...  

In the present study, we synthesized several high-surface area V2O5/TiO2–SiO2 catalysts (vanado titanium silicate, VTS). The synthesized materials are characterized by PXRD, FE-SEM/EDAX, TEM, BET-surface area, FT-IR, UV-Vis, XPS, fluorescence and photocatalytic studies.


Sign in / Sign up

Export Citation Format

Share Document