scholarly journals Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

2017 ◽  
Author(s):  
Richard Axelbaum ◽  
◽  
Benjamin Kumfer ◽  
Akshay Gopan ◽  
Zhiwei Yang ◽  
...  

2019 ◽  
Author(s):  
Mark Fitzsimmons ◽  
Doug M. Heim ◽  
William Follett ◽  
Stevan Jovanovic ◽  
Makini Byron ◽  
...  


Author(s):  
Tim Wendelin ◽  
Ken May ◽  
Randy Gee

Significant progress has been made recently in solar parabolic trough technology development and deployment. Part of this success is due to the changing world energy scenario and the recognition that viable renewable energy technologies can play a role in supplying world energy needs. Part is also due to ongoing collaborative efforts by industry and the Department of Energy’s (DOE) Concentrating Solar Power Program (CSP) to enhance the state of the technology in terms of both cost and performance. Currently, there are two trough concentrator projects which the DOE CSP program is supporting. One company, Solargenix, is developing a design to be used in a 64MW plant outside of Boulder City, Nevada. This design is based on the original LUZ LS-2 trough concentrators employed at the Solar Electric Generating Systems (SEGS) plants in Southern California. Another company, Industrial Solar Technology (IST), is working on a scale-up of their design used historically for process heat applications. Very different from the LS-2 approach, this design is still in the research and development stages. One way in which the DOE CSP parabolic trough program assists industry is by providing optical testing and qualification of their concentrator designs. This paper describes the Video Scanning Hartmann Optical Test System (VSHOT) used to optically test both of these designs. The paper also presents the results of tests performed in the past year and what impact the testing has had on the developmental direction of each design.



2015 ◽  
Author(s):  
Marcin Cybulski ◽  
Adam Formela ◽  
Katarzyna Sidoryk ◽  
Olga Michalak ◽  
Anna Rosa ◽  
...  

One of the anthraquinone classes comprises compounds with a carbonyl group. These natural or synthetic anthraquinones find their application as building blocks in the synthesis of the compounds with a biological activity. Recently, 4-substituted anthra-9,10-quinone-1-carboxylic acids (2) have been used as key intermediates in the synthesis of patented compounds (3) with anticancer activity against multidrug resistant cell lines. Although 2,7-dihydro-3H-dibenz[de,h]cinnolin-3,7-diones (3) were successfully synthetized in a small laboratory scale, several problems were observed during the preparation of their acid intermediates (2) in a multi-gram scale. The known methods for the preparation of 2 are based on the oxidation of the methyl group in anthra-9,10-quinones (1). The most common are: the oxidation with the diluted nitric acid under high pressure in a sealed tube at the temperature of 195-220 oC, the oxidation in nitrobenzene by passing chlorine gas through the reaction mixture at the temperature of 160-170 oC or in a presence of the fuming sulphuric acid. The mentioned methods require aggressive reagents and specific reaction conditions including high pressure and temperature. Thus, there was a need to find a new efficient, cost-effective and reproducible synthetic method of preparation of 2. While searching literature it was found that the direct oxidation of alkylarenes mediated by the sodium periodate/lithium bromide combination produces benzyl acetates throughout benzyl bromides in the acetic acid, or benzylic acids in the diluted inorganic acid. Based on these results we examined a variety of reaction conditions with or without the bromine source and the oxidizing anion. As a result, a novel procedure for the preparation of highly pure 4-substituted anthra-9,10-quinone-1-carboxylic acids (HPLC > 99.5%) using oxidizing anion/ brominating reagent system was developed. It enabled 2 isolation by the simple filtration of the reaction mixture and was applied in the scale-up of 2,7-dihydro-3H-dibenz[de,h]cinnolin-3,7-dione derivatives.



2021 ◽  
Author(s):  
Nafeezuddin Mohammad ◽  
Chiemeka Chukwudoro ◽  
Sujoy Bepari ◽  
Omar Basha ◽  
Shyam Aravamudhan ◽  
...  


2006 ◽  
Vol 6 (4) ◽  
pp. 107-116
Author(s):  
T.U. Kim ◽  
C. Bellona ◽  
P. Xu ◽  
J. Drewe ◽  
G. Amy

There has been considerable information reported on rejection of trace organic compounds from pilot-scale and full-scale experiments with reverse osmosis (RO) and nanofiltration (NF), but this information has limited value in predicting the rejection of these compounds by high-pressure membranes. The goal of this research is to define relationships between compound properties, membrane properties, and operational conditions, e.g. pressure, recovery, affecting trace organic compound rejection, comparing bench-scale recirculation tests and bench-scale single-pass tests. In addition, bench-scale results are compared against single element tests to ascertain scale-up effects.



Author(s):  
Akira Sakai ◽  
Hajime Koikegami ◽  
Nobuyuki Miura ◽  
Eiji Ochi

This paper describes the development of glass melter technology, primarily the liquid fed joule-heated ceramic melter process (LFCM) for the vitrificaton of high-level radioactive liquid waste (HLLW) since 1977 in Japan. In 2013 the active test at the vitrification facility (K-facility) in Rokkasho commercial reprocessing plant was successfully completed for the final acceptance test. During this period many activities on LFCM process development have been carried out in the engineering scale or the full-scale inactive cold tests including the radioactive laboratory scale hot tests. In particular, the design of melter bottom structure and the operating method should be optimized in order to avoid the operational problems caused by accumulation of noble metals (Ru, Rh, Pd), electro-conducive deposits on the melter bottom. Through the operation of inactive and active test facilities in Tokai, the design basis for the Tokai Vitrification Facility (TVF) has been provided. The hot operation of the TVF was started in 1995 to demonstrate the LFCM process including the performance of the melter off-gas clean-up system etc. The TVF has provided the basis of the process design and the operation method for the K-facility melter in Rokkasho. In case of commercial scale vitrification, the glass production rate of the melter should be several times larger than that of the TVF. The K-facility full-scale inactive mock-up melter (KMOC) has been planned to confirm the influence of scale-up factors and the difference between Tokai and Rokkasho wastes. Through the testing operation of the KMOC, which was initially started in 2000, it has been found that the stable formation of a cold cap on a molten glass surface is fundamentally important to avoid the excessive precipitation of noble metals and the yellow phase formation. The active test of the K-facility has been proceeding under the same conditions as the KMOC, and was successfully completed in May, 2013. The advanced glass melter development programs have also commenced from 2009 to ensure a more robust and noble metals are compatible with the LFCM system and also to provide a higher processing rate. The second K-facility full-scale inactive mock-up melter (K2MOC) has been installed in the vitrification technology development facility (X-14) at Rokkasho. Its testing operation has commenced from November, 2013.



2015 ◽  
Vol 9 (1) ◽  
pp. 1-23
Author(s):  
Nasrudin Nasrudin ◽  
Bonar M Sinaga ◽  
Dedi Walujadi

Sektor pertanian Indonesia seharusnya memperoleh dampak positif dari ASEAN-China Free Trade Agreement (ACFTA). Namun demikian,  kinerja sektor pertanian belum menunjukkan peningkatan yang berarti ketika sebagian besar komoditas pertanian telah diturunkan tarifnya melalui tahapan ACFTA. Studi ini meneliti dampak ACFTA terhadap kinerja sektor pertanian Indonesia sebelum dan sesudah ACFTA dengan menggunakan deskriptif analisis. Studi ini juga memprediksi kinerja perekonomian dan kinerja sektor pertanian setelah ACFTA diberlakukan secara penuh menggunakan metode ekonometrik dengan persamaan simultan. Hasil studi ini menunjukkan bahwa kinerja sektor pertanian Indonesia tidak lebih baik dibandingkan dengan sebelum implementasi ACFTA, dan diprediksi akan lebih buruk lagi setelah ACFTA diberlakukan sepenuhnya, akibat dari tingginya tekanan kompetisi dan kekakuan produsen domestik. Peningkatan kualitas infrastruktur domestik, pengembangan riset/teknologi serta penerapan regulasi yang mendukung daya saing merupakan kebijakan yang sangat diperlukan. The ASEAN-China Frade Trade Agreement should positively influence Indonesia’s agricultural sector performance. Unfortunately, the current agricultural sector performance shows no signs of significant increase despite a decrease of tariffs on most agricultural commodities through ACFTA. This study sets out to examine the overall impact of ACFTA on Indonesian agricultural sector performance prior to and after the implementation of ACFTA through descriptive analysis. This study also predicts the overall economic performance and agricultural sector performance after the full implementation of ACFTA by utilizing econometric method with simultaneous equation. This study finds that the agricultural sector performance does not improve after the implementation of ACFTA and it argues further that it will weaken due to high pressure of competition and the rigidity of domestic producers. Quality improve on domestic infrastructure, research and technology development and regulations which enhance competitiveness are high priority policies to support Indonesia’s agricultural sector performance.



2011 ◽  
Vol 105 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Kidane Shibeshi ◽  
Mohammed M. Farid


Sign in / Sign up

Export Citation Format

Share Document