scholarly journals High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

2018 ◽  
Author(s):  
Gary Was ◽  
Brian Wirth ◽  
Athur Motta ◽  
Dane Morgan ◽  
Djamel Kaoumi ◽  
...  
2008 ◽  
Vol 22 (31n32) ◽  
pp. 6118-6123 ◽  
Author(s):  
SUNG-WON YOUN ◽  
CHIEKO OKUYAMA ◽  
MASHARU TAKAHASHI ◽  
RYUTARO MAEDA

Glass hot-embossing is one of essential techniques for the development of high-performance optical, bio, and chemical micro electromechanical system (MEMS) devices. This method is convenient, does not require routine access to clean rooms and photolithographic equipment, and can be used to produce multiple copies of a quartz mold as well as a MEMS component. In this study, quartz molds were prepared by hot-embossing with the glassy carbon (GC) masters, and they were applied to the hot-emboss of borosilicate glasses. The GC masters were prepared by dicing and focused ion beam (FIB) milling techniques. Additionally, the surfaces of the embossed quartz molds were coated with molybdenum barrier layers before embossing borosilicate glasses. As a result, micro-hot-embossed structures could be developed in borosilicate glasses with high fidelity by hot embossing with quartz molds.


1984 ◽  
Vol 23 (Part 2, No. 6) ◽  
pp. L417-L420 ◽  
Author(s):  
Masao Tamura ◽  
Shoji Shukuri ◽  
Tohru Ishitani ◽  
Masakazu Ichikawa ◽  
Takahisa Doi

1992 ◽  
Vol 279 ◽  
Author(s):  
A. T. Motta ◽  
L. M. Howe ◽  
P. R. Okamoto

ABSTRACTThin foils of Zircaloy-4 were irradiated with 350 KeV 40Ar ions in the dual ion beam/HVEM facility at Argonne National Laboratory at 300 – 650 K. The irradiation-induced araorphization of the intermetallic precipitates Zr (Cr, Fe)2 and Zr2 (Ni, Fe) was studied in situ. For Zr (Cr,Fe)2 precipitates the dose-to-amorphization was found to increase exponentially with temperature, with a critical temperature of about 650 K. The amorphization morphology was shown to be homogeneous, with no preferential site for nucleation, in contrast to neutron-irradiation amorphization which started at the precipitate-matrix interface. For Zr2 (Ni,Fe) precipitates it was found that amorphization occurred at 550 K and 600 K, whereas in neutron irradiation no amorphization has been observed at those temperatures. The results are discussed in the context of the previous experimental results of neutron and electron irradiation and likely amorphization mechanisms are proposed.


1988 ◽  
Vol 128 ◽  
Author(s):  
S. J. Pearton ◽  
K. T. Short ◽  
K. S. Jones ◽  
A. G. Baca ◽  
C. S. Wu

ABSTRACTThe systematics of ion beam induced intermixing of WSi0.45 on GaAs have been studied after through-implantation of Si or O in the dose range 1013 − 5 × 1016 cm−2. SIMS profiling shows significant knock-on of Si and W into the GaAs at the high dose range in accordance with Monte Carlo simulations, but there is virtually no electrical activation (≤0.1%) of this Si after normal implant annealing (900°C, 10 sec). This appears to be a result of the high level of disorder near the metal-semiconductor interface, which is not repaired by annealing. This damage consists primarily of dislocation loops extending a few hundred angstroms below the end of range of the implanted ions. Extrapolation of the ion doses used in this work to the usual doses used in GaAs device fabrication would imply that ion-induced intermixing of WSix will not be significant in through-implantation processes.


1985 ◽  
Vol 54 ◽  
Author(s):  
S. Furukawa ◽  
T. Asano ◽  
T. Fukada ◽  
H. Ishiwara ◽  
K. Tsutsui

ABSTRACTIon beam mixing effects on metals and highly doped semiconductors on GaAs for formation of ohmic contacts have been studied. In this study, we have principally selected Pt as metal and Ge as semiconductors electrodes for GaAs. In Pt/GaAs system, we observed alloying phenomena induced by Si+, Ar+, Ge+ ion mixing effects. The amount of GaAs reacted with Pt was found to be proportional to the mass of the incident ions for constant dose. Concernig with the formation of ohmic contacts, only in the case of Si implantation through Pt films, the conversion from Schottky- to ohmic-contact was observed due to ion beam mixing effects. In Ge/GaAs system, we observad the solid state epitaxy for implanted Ge layer by the first annealing at 450°C in the two step annealing, but no activation of the implanted species. For activating implanted species, the second annealing at 800°C was effective. Concerning with the formation of ohmic contacts, we observed that the ohmic I-V characteristics for Ge/GaAs system could be obtainable when the following conditions were satisfied at the same time: 1) high dose implantation of As+ into Ge layer, 2) low dose implantation of Si into Ge/GaAs boundary and 3) relatively short period annealing in the second annealing step. From such study, it is concluded that ion beam mixing in conjunction with rapid annealing would be most promising for forming stable and reproducible ohmic contacts.


2000 ◽  
Vol 622 ◽  
Author(s):  
Jörg K.N. Lindner ◽  
Stephanie Wenzel ◽  
Bernd Stritzker

ABSTRACTHigh-dose titanium implantations have been performed into ion beam synthesized heteroepitaxial layer systems of Si/3C-SiC/Si(100) in order to study the formation of titanium silicide layers in the silicon top layer. The structure and composition of layers was analysed using RBS, XRD, XTEM and EFTEM. The sputtering rates of 180 keV Ti ions were determined using the lower SiC/Si interface as a marker. A homogeneous surface layer with the stoichiometry of TiSi2 was formed by a nearly stoichiometric implantation and subsequent annealing. The formation of more metal-rich silicides was observed at doses where the peak Ti concentration largely exceeds the TiSi2 stoichiometry and where the total amount of Ti atoms in the top layer is greater than the amount needed to convert the entire Si top layer into TiSi2. Under these conditions, strong solid state reactions of the implanted Ti atoms with the buried SiC layer and the silicon substrate are observed.


1986 ◽  
Vol 76 ◽  
Author(s):  
Y. Horiike ◽  
R. Yoshikawa ◽  
H. Okano ◽  
M. Nakase ◽  
H. Komano ◽  
...  

ABSTRACTRecent progress in microfabrication technologies for advanced VLSI devices, such as 16M and 64MDRAM, is presented. First, an EB delineator with a vector-scanned VSB on a moving stage has been developed for printing 0.25 μm patterns employing PMMA, high dose exposure, and 50 KeV EB. Optical lithography also has been extended toward lower submicron geometry. A Krf excimer laser reduction projection system, using a quartz/CaF2 lens, resolves successfully 0.35 μm patterns. Ga field ion beam technology has been developed with new applications in fuse-cutting of redundancy and in optimizing sense amplifier by cutting transistor gates in the SRAM device. For fine line etching technology, collimated reactive ions produced by 10−3 Torr magnetron discharge achieves deep Si trench etching and tapered Al etching by using a polymer deposition process in addition to the original thin sidewall film. Finally, a damage-free excimer laser etching process has been developed which can etch n+ poly-Si with resist mask and with pattern transfer using an optics down to 0.5 μm and 0.9 μm resolutions respectively.


Sign in / Sign up

Export Citation Format

Share Document