scholarly journals Summary of NOx Emissions Reduction from Biomass Cofiring

Author(s):  
D. Dayton
2007 ◽  
Vol 44 (03) ◽  
pp. 175-179
Author(s):  
Robert G. Latorre ◽  
Joseph P. Cardella V

This paper presents the results of SNAME Small Craft Panel SC-3 Fishing Systems investigation of trends in US fishing vessel (Fig. 1) (L> 22.9 m) powering and NOx emissions (1900–2000). The study estimates the 1, 299 vessels in the US fishing fleet produce 306 tons/day of NOx. The largest powers are found in the decades of 1960–1980. The actual power kW is compared to a reference power kWo using the Powering Index Ratio PIR = kW/kWo. It was found that 50 to 80% of the power in seiners, trawlers, and crabber/ trapper/clam vessels have PIR > 2.5. The reduction of fishing vessel diesel engine NOx can be best achieved by adopting acceptable levels of vessel power/length for the basis of revenue and tax rather than using the vessel age as emissions reduction criteria.


Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Mangani ◽  
Antonio Asti ◽  
Gianni Ceccherini ◽  
...  

One of the driving requirements in gas turbine design is emissions reduction. In the mature markets (especially the North America), permits to install new gas turbines are granted provided emissions meet more and more restrictive requirements, in a wide range of ambient temperatures and loads. To meet such requirements, design techniques have to take advantage also of the most recent CFD tools. As a successful example of this, this paper reports the results of a reactive 3D numerical study of a single-can combustor for the GE10 machine, recently updated by GE-Energy. This work aims to evaluate the benefits on the flame shape and on NOx emissions of a new pilot-system located on the upper part of the liner. The former GE10 combustor is equipped with fuel-injecting-holes realizing purely diffusive pilot-flames. To reduce NOx emissions from the current 25 ppmvd@15%O2 to less than 15 ppmvd@15%O2 (in the ambient temperature range from −28.9°C to +37.8°C and in the load range from 50% and 100%), the new version of the combustor is equipped with 4 swirler-burners realizing lean-premixed pilot flames; these flames in turn are stabilized by a minimal amount of lean-diffusive sub-pilot-fuel. The overall goal of this new configuration is the reduction of the fraction of fuel burnt in diffusive flames, lowering peak temperatures and therefore NOx emissions. To analyse the new flame structure and to check the emissions reduction, a reactive RANS study was performed using STAR-CD™ package. A user-defined combustion model was used, while to estimate NOx emissions a specific scheme was also developed. Three different ambient temperatures (ISO, −28.9°C and 37.8°C) were simulated. Results were then compared with experimental measurements (taken both from the engine and from the rig), resulting in reasonable agreement. Finally, an additional simulation with an advanced combustion model, based on the laminar flamelet approach, was performed. The model is based on the G-Equation scheme but was modified to study partially premixed flames. A geometric procedure to solve G-Equation was implemented as add-on in STAR-CD™.


2012 ◽  
Vol 23 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Shao Lin ◽  
Rena Jones ◽  
Cristian Pantea ◽  
Halûk Özkaynak ◽  
S Trivikrama Rao ◽  
...  

Author(s):  
Yuzhen Lin ◽  
Yunhui Peng ◽  
Gaoen Liu

A low NOx emission combustor design was presented in this paper. The design features the premixer-prevaporizer tube with multihole and two stages arranged radially in line, with the outer stage being pilot stage and inner stage being main stage. The multihole premixer and prevaporizer is a part of main stage. The results of NOx emission were provided and also compared with the baseline design that the premixer and prevaporizer tube without multihole. The double swirler prefilming airblast atomizer was installed in the premixed prevaporized duct entrance. The mean drop size and radial fuel flux distribution were measured to determine proper configurations of the multihole premixer-prevaporizer. NOx emission investigations were carried out using a test combustor with one pilot stage and one main stage under the operating condition of high inlet temperature (800K) and inlet air pressure was atmospheric pressure. The experiment results demonstrated large NOx emissions reduction of the multihole premixer-prevaporizer compared with the baseline design. The more even fuel-air mixing, which was gained by the multiple jets, intensified the fuel and air mixing within the premixer-prevaporizer, resulted in the large reduction of NOx emission. The configurations of multihole premixer-prevaporizer had great influence on NOx emissions reduction.


Author(s):  
Ernst Radloff ◽  
Charles Gautier

The Transportation Development Centre of Transport Canada, in collaboration with Environment Canada’s Emissions Research and Measurement Division, conducted a series of emissions tests onboard the Oceanex RoRo vessel MV Cabot operating between Montre´al, Quebec, and St. John’s, Newfoundland. The primary objectives were to verify emissions inventories and demonstrate the feasibility of installing affordable emissions reduction technology on marine vessels as well as compliance with future regulatory emissions limits. The tests also provided an opportunity for Canada to share information on emissions program and technology developments with U.S. regulatory authorities. This may lead to developing joint emissions reduction initiatives for existing marine vessels. This paper describes the field-testing of a water injection system (WIS) to reduce oxides of nitrogen (NOx) emissions from ocean-going vessels. Tests were conducted on a semi-dedicated basis during voyage and under steady-state conditions. The emissions measurements were taken in accordance with ISO 8178-4-E3 protocol and using both marine diesel oil and intermediate fuel oil, which enabled the evaluation of the impact of different fuel type and quality on emissions. An initial series of tests was carried out on the MV Cabot in March 2004, followed by a second series of tests on the same vessel in March 2005. These tests demonstrated the effectiveness of a low-cost WIS for reducing NOx emissions in marine diesel engines. They also showed that water injection reduces NOx at the expense of an increase in both particulate matter and carbon monoxide when using intermediate fuel oil. NOx reductions varied between 10 and 35 percent, and were most effective at high water injection ratios above 50 percent engine load. The test results showed no negative impact of the WIS on fuel consumption or engine operation and performance. This paper compares the results obtained from the consecutive series of tests in terms of the effectiveness of NOx reduction, and analyses the results in the context of other full-scale test results obtained from emissions control system vendors and engine suppliers. It also investigates the theoretical process and technology of water injection through charge air fumigation, and both direct water and fuel/water emulsion injection. In addition, the effects of water injection on engine emissions, operation and maintenance, and the optimization of water injection from a knowledge-based perspective are discussed. Further testing and development of the WIS are required to realize optimal emissions reduction potential and to determine the impact of water injection on fuel consumption, and engine operational performance as well as the impact of fuel quality on emissions.


Author(s):  
Norbert Brehm ◽  
Stephen J. Baker ◽  
Steven P. Jones

The social responsibility for the environment, in conjunction with the threat of more stringent emissions regulations requirements, initiated a comprehensive NOx-emissions reduction programme in BMW Rolls-Royce. The achievements of the first step for NOx-emissions reduction by optimisation of the single annular combustor stoichiometry and mixing are presented. The combustor development programme is described, and rig and engine test results are compared. The NOx-certification levels achieved with the BR 710 single annular low NOx-combustor are down to 55 % of the actual ICAO limit.


Sign in / Sign up

Export Citation Format

Share Document