scholarly journals Marine Biogeochemistry in the Coastal Arctic: Towards Improved Quantitative Understanding of the Controls on Marine Biogeochemical Processes in the Arctic Coastal Zone, and Their Impacts on Climate and the Food Web: A White Paper for DOE’s Regional and Global Model Analysis (RGMA) Program

2019 ◽  
Author(s):  
Clara Deal ◽  
Georgina Gibson ◽  
Wilbert Weijer
2021 ◽  
Vol 9 (2) ◽  
pp. 317
Author(s):  
Dolors Vaqué ◽  
Julia A. Boras ◽  
Jesús Maria Arrieta ◽  
Susana Agustí ◽  
Carlos M. Duarte ◽  
...  

The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed. We measured viral and prokaryote abundances, virus-mediated mortality on prokaryotes, heterotrophic and phototrophic nanoflagellate abundance, and environmental factors. In both polar zones, we found small differences in environmental factors between the SML and the SSW. In contrast, despite the adverse effect of wind, viral and prokaryote abundances and virus-mediated mortality on prokaryotes were higher in the SML than in the SSW. As a consequence, the higher carbon flux released by lysed cells in the SML than in the SSW would increase the pool of dissolved organic carbon (DOC) and be rapidly used by other prokaryotes to grow (the viral shunt). Thus, our results suggest that viral activity greatly contributes to the functioning of the microbial food web in the SML, which could influence the biogeochemical cycles of the water column.


2019 ◽  
Vol 58 (SA) ◽  
pp. SAAB06
Author(s):  
Yuma Saito ◽  
Kodai Shibata ◽  
Katsuyuki Takahashi ◽  
Seiji Mukaigawa ◽  
Koichi Takaki ◽  
...  

2005 ◽  
Vol 19 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
John A. Harrison ◽  
Sybil P. Seitzinger ◽  
A. F. Bouwman ◽  
Nina F. Caraco ◽  
Arthur H. W. Beusen ◽  
...  

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 145
Author(s):  
Jian Liu ◽  
Liyang Zhan ◽  
Qingkai Wang ◽  
Man Wu ◽  
Wangwang Ye ◽  
...  

Nitrous oxide (N2O) is the third most important greenhouse gas in the atmosphere, and the ocean is an important source of N2O. As the Arctic Ocean is strongly affected by global warming, rapid ice melting can have a significant impact on the N2O pattern in the Arctic environment. To better understand this impact, N2O concentration in ice core and underlying seawater (USW) was measured during the seventh Chinese National Arctic Research Expedition (CHINARE2016). The results showed that the average N2O concentration in first-year ice (FYI) was 4.5 ± 1.0 nmol kg−1, and that in multi-year ice (MYI) was 4.8 ± 1.9 nmol kg−1. Under the influence of exchange among atmosphere-sea ice-seawater systems, brine dynamics and possible N2O generation processes at the bottom of sea ice, the FYI showed higher N2O concentrations at the bottom and surface, while lower N2O concentrations were seen inside sea ice. Due to the melting of sea ice and biogeochemical processes, USW presented as the sink of N2O, and the saturation varied from 47.2% to 102.2%. However, the observed N2O concentrations in USW were higher than that of T-N2OUSW due to the sea–air exchange, diffusion process, possible N2O generation mechanism, and the influence of precipitation, and a more detailed mechanism is needed to understand this process in the Arctic Ocean.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Blanche Saint-Béat ◽  
Brian D. Fath ◽  
Cyril Aubry ◽  
Jonathan Colombet ◽  
Julie Dinasquet ◽  
...  

Baffin Bay, located at the Arctic Ocean’s ‘doorstep’, is a heterogeneous environment where a warm and salty eastern current flows northwards in the opposite direction of a cold and relatively fresh Arctic current flowing along the west coast of the bay. This circulation affects the physical and biogeochemical environment on both sides of the bay. The phytoplanktonic species composition is driven by its environment and, in turn, shapes carbon transfer through the planktonic food web. This study aims at determining the effects of such contrasting environments on ecosystem structure and functioning and the consequences for the carbon cycle. Ecological indices calculated from food web flow values provide ecosystem properties that are not accessible by direct in situ measurement. From new biological data gathered during the Green Edge project, we built a planktonic food web model for each side of Baffin Bay, considering several biological processes involved in the carbon cycle, notably in the gravitational, lipid, and microbial carbon pumps. Missing flow values were estimated by linear inverse modeling. Calculated ecological network analysis indices revealed significant differences in the functioning of each ecosystem. The eastern Baffin Bay food web presents a more specialized food web that constrains carbon through specific and efficient pathways, leading to segregation of the microbial loop from the classical grazing chain. In contrast, the western food web showed redundant and shorter pathways that caused a higher carbon export, especially via lipid and microbial pumps, and thus promoted carbon sequestration. Moreover, indirect effects resulting from bottom-up and top-down control impacted pairwise relations between species differently and led to the dominance of mutualism in the eastern food web. These differences in pairwise relations affect the dynamics and evolution of each food web and thus might lead to contrasting responses to ongoing climate change.


2010 ◽  
Vol 44 (1) ◽  
pp. 356-361 ◽  
Author(s):  
Frederik De Laender ◽  
Dick Van Oevelen ◽  
Sylvia Frantzen ◽  
Jack J. Middelburg ◽  
Karline Soetaert

Author(s):  
Zhang Xiuhua

A recently released white paper on the Arctic policy emphasized the principal lines of China's activities in the Arctic, particularly development of resources, fishing and tourism, Arctic shipping routes, infrastructure, navigation security, scientific research, and environmental protection. Such priorities are in the best interest of China's strategy of the unified regional development and new architectonics of the extensive exploration of the potential of China's Northern provinces. Being the northernmost region of the country, Heilongjiang province has an opportunity to become China's outpost for the implementation of the national Arctic policy. This chapter assesses the challenges and perspectives of turning Heilongjiang province into a transport and logistics hub between Northeast Asia, Europe, and North America by China's participation in the development of the Arctic Blue Economic Corridor. The author elaborates an idea of the establishment of the Arctic Research and Industrial Cluster based on the scientific, technological, and industrial facilities of Heilongjiang province.


2019 ◽  
Vol 6 ◽  
Author(s):  
Kalle Olli ◽  
Elisabeth Halvorsen ◽  
Maria Vernet ◽  
Peter J. Lavrentyev ◽  
Gayantonia Franzè ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document