scholarly journals Microstructural Characterization of Alloy 709 Plate Materials with Additional Heat Treatment Protocol

2019 ◽  
Author(s):  
T. -L. Sham ◽  
X. Zhang ◽  
G. A. Young

2021 ◽  
Vol 875 ◽  
pp. 76-80
Author(s):  
Hifsa Mazhar ◽  
Wilayat Hussain

Manganese bismuth alloy has gained importance due to its rare earth free elements, positive temperature coefficient and unique magnetic properties. Low temperature phase (LTP) MnBi was successfully prepared by arc melting with subsequent heat treatments and melt spinning technique followed by heat treatment for different durations. LTP MnBi formation was confirmed using XRD analysis and microstructural characterization of the samples was done using field emission scanning electron microscope. MnBi with greater LTP amount was formed by melt spinning route when compared with its counter arc melted one. Magnetic energy density of LTP MnBi formed by melt spinning technique with different heat treatment time was studied.



2018 ◽  
Vol 910 ◽  
pp. 35-40
Author(s):  
Eswaran Elango ◽  
Somasundaram Saravanan ◽  
Krishnamorthy Raghukandan

This study focuses on effect of post weld heat treatment (PWHT) on interfacial and mechanical properties of Al 5052-SS 316 explosive clad with copper interlayer at varied loading ratios and inclination angles. The use of interlayer is proposed for the control of additional kinetic energy dissipation and to alleviate the formation of intermetallic compounds at the interface. The Al-Steel clads are subjected to PWHT at varied temperatures (300°C-450°C) for 30 minutes and the results are presented. The microstructural characterization of as-clad and PWHT samples is observed by an optical microscope and Scanning Electron Microscope (SEM). Maximum hardness is obtained at the interface of the as-clad and PWHT samples. Increase in PWHT temperature enhances the tensile strength of the composite, whereas, the tensile strength decreases at 300°C due to the diffusion of Al and Cu elements and the formation of detrimental intermetallic compounds.





10.30544/314 ◽  
2017 ◽  
Vol 23 (3) ◽  
pp. 281-289
Author(s):  
Mirko Gojić ◽  
Stjepan Kožuh ◽  
Ivana Ivanić ◽  
Magdalena Selanec ◽  
Tamara Holjevac Grgurić ◽  
...  

In this paper, the microstructure of Cu82.3Al8.3Mn9.4 (in wt. %) shape memory alloy after hot and cold rolling was investigated. The Cu82.3Al8.3Mn9.4 alloy was produced by a vertical continuous casting method in the form a cylinder rod of 8 mm in diameter. After the casting, hot and cold rolling was performed. By hot rolling a strip with a thickness of 1.75 mm was obtained, while by cold rolling a strip with a thickness of 1.02 mm was produced. After the rolling process, heat treatment was performed. Heat treatment was carried out by solution annealing at 900 °C held for 30 minutes and water quenched immediately after heating. The microstructure characterization of the investigated alloy was carried out by optical microscopy (OM), scanning electron microscopy (SEM) equipped with a device for energy dispersive spectroscopy (EDS). Phase transformation temperatures and fusion enthalpies were determined by differential scanning calorimetry (DSC) method. The homogenous martensite microstructure was confirmed by OM and SEM micrographs after casting. During rolling the two-phase microstructure occurred. Results of DSC analysis showed martensite start (Ms), martensite finish (Mf), austenite start (As) and austenite finish (Af) temperatures.



2016 ◽  
Vol 24 (6) ◽  
pp. 593-609 ◽  
Author(s):  
A. Reyes ◽  
E. Bedolla ◽  
R. Perez ◽  
A. Contreras


2006 ◽  
Vol 326-328 ◽  
pp. 429-432 ◽  
Author(s):  
Il Ho Kim ◽  
C.S. Kim ◽  
K.T. Kim ◽  
Yong Hwan Kim

The mechanical alloying processes was employed to fabricate Al-4at.%Zr alloy with nano-sized grains and very fine Al3Zr compounds. The phase transformations and the stability of the phases formed during mechanical alloying and heat treatment processes were investigated. The grain sizes of the alloys immediately after milling and following the subsequent heat treatment at 550°C were 54.2nm and 106.4nm, respectively. Some of Zr atoms were dissolved into the Al matrix and most of them reacted with hydrogen produced by decomposition of PCA(process control agent) to form ZrH2 during mechanical alloying process. These ZrH2 hydrides decomposed gradually after the heat treatment. Stable Al3Zr with a DO23 structure was formed by heat treatment at temperature of more than 4500C. The hardness of the Al-4at.%Zr alloy was more than two times higher than those of other Al-based alloys.



2014 ◽  
Vol 979 ◽  
pp. 66-69
Author(s):  
P. Chankachang ◽  
S. Chantara ◽  
S. Punyanitya ◽  
C. Saelee

In this work, hydroxyapatite (HA) powder derived from pig bone was prepared by thermal processes. The effect of heat treatment temperatures on crystallinity and microstructure of the HA powder were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The powders are uniaxially compact and then sintering at 900°C-1050°C in air. The microstructural characterization of the porous was carried out by SEM. Filtration studies using the sintered porous HA ceramic were performed for sanitary wastewater. The analysis of raw water sample and filtered water were performed. The results showed that the water permeated through the porous HA ceramics could be cleaner water to meet of environmental standard.



Sign in / Sign up

Export Citation Format

Share Document