scholarly journals Solid-State Joining of Magnesium Sheet to High-Strength Steel

2021 ◽  
Author(s):  
Piyush Upadhyay ◽  
Hrishikesh Das ◽  
Jian Chen ◽  
Zhili Feng ◽  
Hui Huang ◽  
...  
2021 ◽  
Vol 100 (12) ◽  
pp. 410-420
Author(s):  
KRISHNA SAMPATH ◽  

Recently, Dr. Glyn M. Evans posted a large shielded metal arc (SMA) weld metal (WM) database on the ResearchGate website (researchgate.net). This database contains more than 950 WM compositions, along with their respective WM tensile and Charpy V-notch (CVN) impact properties. In particular, the CVN impact properties list the test temperatures that achieved 28 and 100 J impact energy for each WM composition. While the availability of this SMA WM database is a valuable and rare gift to the welding community, how could the welding community analyze this database to gain valuable insights? This paper utilizes a constraints-based model (CBM) as a simple and effective framework to organize and analyze this very large Fe-C-Mn SMA WM database. A CBM is built on the metallurgical principle that one needs to lower relevant solid-state phase transformation (i.e., austenite decomposition) temperatures to improve WM strength and fracture toughness while simultaneously reducing carbon content and Yurioka’s carbon equivalent number (CEN) to improve the weldability of high-strength steels. To this end, a CBM identifies and simultaneously solves several statistical (regression) equations that relate the chemical composition of high-strength steel WM with Yurioka’s CEN and selected solid-state phase transformation temperatures related to austenite decomposition. The results of the current effort demonstrate that the analysis of Evans’s shielded metal arc welding database using a CBM as a framework reaffirms that controlling carbon content, the value of the CEN, and calculated solid-state phase transformation temperatures, particularly the difference between the calculated Bs (bainite-start) and Ms (martensite-start) temperatures, is critical to developing and identifying high-performance, high-strength steel welding electrodes. A dual approach that manipulates the contents of principal alloy elements such as C, Mn, Ni, Cr, Mo, and Cu, and adds controlled amounts of Ti, B, Al, O, and N, appears to offer the best means to lower relevant solid-state phase transformation temperatures to produce high-strength and high-toughness WMs.


Author(s):  
I.R. Antypes ◽  
◽  
V.V. Zaitsev ◽  

Currently, the use of composite materials is increasingly used in various areas of the national economy, including the aviation industry. The materials of this article are devoted to the study of the use of composite materials for the manufacture of aircraft landing gear in comparison with the traditionally used brand of steel. As a result of the work carried out, it was found that the slope made of carbon fiber showed a critical stress twice as high as its design made of 30xgsn2a steel. In addition, carbon plastics are superior to high-strength steel in terms of specific strength, stiffness, and tensile strength.


2018 ◽  
pp. 69-78
Author(s):  
M. L. Fedoseev ◽  
◽  
M. S. Mikhailov ◽  
N. F. Drozdova ◽  
S. N. Petrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document