scholarly journals Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

1996 ◽  
Author(s):  
B N Singh ◽  
M Eldrup ◽  
P Toft ◽  
D J Edwards
2007 ◽  
Vol 24-25 ◽  
pp. 13-16
Author(s):  
V.P. Smolentsev ◽  
A.V. Levin ◽  
A.V. Gribentchikov

It is difficult to select the materials combining in modern industry, this paper analyzed the drawbacks of different materials (the stainless, the copper alloys, aluminum and its alloys) on selecting materials for tooling and selection of coatings that help to eliminate drawbacks, analyzed the micro-arc oxidation (MAO) and its application of different materials. It is ascertained that aluminum alloys may be practical to use for electrodes for electroerosive machining only in exceptional cases when the wear of the tool is not determinative. Selection of materials combining required physical and mechanical properties may be a difficult task in tooling designing and manufacturing in modern industry. This problem is especially evident when current-conducting elements of tooling used for electrophysical and electrochemical processing methods are manufactured. The main distinctive feature of these methods is maintenance of values under the influence of electrical current and corrosive medium and during electrochemical reactions. The article addresses comparative analysis of properties of different materials used for tooling manufacture, advantages and drawbacks of these materials and selection of coatings that help to eliminate drawbacks. When selecting materials for tooling, the alloy in use shall have the following properties [4]: high electrical conductivity, high corrosion resistance, high resistance to local fracture, high adhesion to dielectric coatings, sufficient mechanical strength, high machinability and low cost. The following materials are considered to meet operating requirements to the fullest extend [4.5]: stainless steels and copper alloys that have high machinability, electrical conductivity, weldability and mechanical strength; titanium- and chromium-base alloys that have high mechanical strength, corrosion resistance and resistance to local fracture and enables to make oxide insulating layer protecting surface from anodic dissolution. However, these materials have a number of drawbacks, the most important of which is high cost that impedes their usage especially in serial production. Furthermore, stainless steels and titaniumand chromium-base alloys have the following drawbacks that affect product cost: - complexity of machinability that results in high labor-intensiveness of manufacturing process of tooling; - heavy losses in electric voltage provided that these materials are used as current-carrying elements that makes current supply calculation difficult and requires application of more powerful sources; - cracking and fracture of oxide surface coating even when mechanical effect is insignificant that results in loss of isolating and protective properties [1,2]. Furthermore, oxide coating application process cannot be controlled completely and as a result, coating uniformity in thickness, composition and properties cannot be achieved. Application of coatings to the areas with varied sections and to the surfaces with projections and sharp edges is a difficult problem. Layers applied to these surfaces have little adhesion to parent material and their thickness is limited due to high stress concentration and etching. The revealed drawbacks require development and usage of surface layer improvement process to receive required physical and mechanical properties of composite material.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2016 ◽  
Vol 13 (2) ◽  
pp. 67
Author(s):  
Engku Liyana Zafirah Engku Mohd Suhaimi ◽  
Jamil Salleh ◽  
Suzaini Abd Ghani ◽  
Mohamad Faizul Yahya ◽  
Mohd Rozi Ahmad

An investigation on the properties of Tenun Pahang fabric performances using alternative yarns was conducted. The studies were made in order to evaluate whether the Tenun Pahang fabric could be produced economically and at the same time maintain the fabric quality. Traditional Tenun Pahang fabric uses silk for both warp and weft. For this project, two alternative yarns were used which were bamboo and modal, which were a little lower in cost compared to silk. These yarns were woven with two variations, one with the yarns as weft only while maintaining the silk warp and the other with both warp and weft using the alternative yarns. Four (4) physical testings and three (3) mechanical testings conducted on the fabric samples. The fabric samples were evaluated including weight, thickness, thread density, crease recovery angle, stiffness and drapability. The results show that modal/silk and bamboo silk fabrics are comparable in terms of stiffness and drapability, hence they have the potential to replace 100% silk Tenun Pahang.


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


Sign in / Sign up

Export Citation Format

Share Document