scholarly journals Three dimensional computer vision: Potential applications with curvature tracking

1996 ◽  
Author(s):  
Adam Sanford
2017 ◽  
Author(s):  
Martin Leroux ◽  
Sofiane Achiche ◽  
Maxime Raison

Over the last decade, eye tracking systems have been developed and used in many fields, mostly to identify targets on a screen, i.e. a plane. For novel applications such as the control of robotic devices by the user vision, there is a great interest in developing methods base on eye tracking to identify target points in free three dimensional environments. The objective of this paper is to characterise the accuracy the eye tracking and computer vision combination that was designed recently to overcome many limitations of eye tracking in 3D space. We propose a characterization protocol to assess the behavior of the accuracy of the system over the workspace of a robotic manipulator assistant. Applying this protocol to 33 subjects, we estimated the behavior of the error of the system relatively to the target position on a cylindrical workspace and to the acquisition time. Over our workspace, targets are located on average at 0.84 m and our method shows an accuracy 12.65 times better than the calculation of the 3D point of gaze. With the current accuracy, many potential applications become possible, such as visually controlled robotic assistants in the field of rehabilitation and adaptation engineering.


2017 ◽  
Author(s):  
Martin Leroux ◽  
Sofiane Achiche ◽  
Maxime Raison

Over the last decade, eye tracking systems have been developed and used in many fields, mostly to identify targets on a screen, i.e. a plane. For novel applications such as the control of robotic devices by the user vision, there is a great interest in developing methods base on eye tracking to identify target points in free three dimensional environments. The objective of this paper is to characterise the accuracy the eye tracking and computer vision combination that was designed recently to overcome many limitations of eye tracking in 3D space. We propose a characterization protocol to assess the behavior of the accuracy of the system over the workspace of a robotic manipulator assistant. Applying this protocol to 33 subjects, we estimated the behavior of the error of the system relatively to the target position on a cylindrical workspace and to the acquisition time. Over our workspace, targets are located on average at 0.84 m and our method shows an accuracy 12.65 times better than the calculation of the 3D point of gaze. With the current accuracy, many potential applications become possible, such as visually controlled robotic assistants in the field of rehabilitation and adaptation engineering.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


2021 ◽  
Vol 13 (8) ◽  
pp. 1537
Author(s):  
Antonio Adán ◽  
Víctor Pérez ◽  
José-Luis Vivancos ◽  
Carolina Aparicio-Fernández ◽  
Samuel A. Prieto

The energy monitoring of heritage buildings has, to date, been governed by methodologies and standards that have been defined in terms of sensors that record scalar magnitudes and that are placed in specific positions in the scene, thus recording only some of the values sampled in that space. In this paper, however, we present an alternative to the aforementioned technologies in the form of new sensors based on 3D computer vision that are able to record dense thermal information in a three-dimensional space. These thermal computer vision-based technologies (3D-TCV) entail a revision and updating of the current building energy monitoring methodologies. This paper provides a detailed definition of the most significant aspects of this new extended methodology and presents a case study showing the potential of 3D-TCV techniques and how they may complement current techniques. The results obtained lead us to believe that 3D computer vision can provide the field of building monitoring with a decisive boost, particularly in the case of heritage buildings.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1133
Author(s):  
Nicolas Marchal ◽  
Tristan da Câmara Santa Clara Gomes ◽  
Flavio Abreu Araujo ◽  
Luc Piraux

The versatility of the template-assisted electrodeposition technique to fabricate complex three-dimensional networks made of interconnected nanowires allows one to easily stack ferromagnetic and non-magnetic metallic layers along the nanowire axis. This leads to the fabrication of unique multilayered nanowire network films showing giant magnetoresistance effect in the current-perpendicular-to-plane configuration that can be reliably measured along the macroscopic in-plane direction of the films. Moreover, the system also enables reliable measurements of the analogous magneto-thermoelectric properties of the multilayered nanowire networks. Here, three-dimensional interconnected NixFe1−x/Cu multilayered nanowire networks (with 0.60≤x≤0.97) are fabricated and characterized, leading to large magnetoresistance and magneto-thermopower ratios up to 17% and −25% in Ni80Fe20/Cu, respectively. A strong contrast is observed between the amplitudes of magnetoresistance and magneto-thermoelectric effects depending on the Ni content of the NiFe alloys. In particular, for the highest Ni concentrations, a strong increase in the magneto-thermoelectric effect is observed, more than a factor of 7 larger than the magnetoresistive effect for Ni97Fe3/Cu multilayers. This sharp increase is mainly due to an increase in the spin-dependent Seebeck coefficient from −7 µV/K for the Ni60Fe40/Cu and Ni70Fe30/Cu nanowire arrays to −21 µV/K for the Ni97Fe3/Cu nanowire array. The enhancement of the magneto-thermoelectric effect for multilayered nanowire networks based on dilute Ni alloys is promising for obtaining a flexible magnetic switch for thermoelectric generation for potential applications in heat management or logic devices using thermal energy.


Sign in / Sign up

Export Citation Format

Share Document