scholarly journals Assessment of accuracy for target detection in 3D-space using eye tracking and computer vision

Author(s):  
Martin Leroux ◽  
Sofiane Achiche ◽  
Maxime Raison

Over the last decade, eye tracking systems have been developed and used in many fields, mostly to identify targets on a screen, i.e. a plane. For novel applications such as the control of robotic devices by the user vision, there is a great interest in developing methods base on eye tracking to identify target points in free three dimensional environments. The objective of this paper is to characterise the accuracy the eye tracking and computer vision combination that was designed recently to overcome many limitations of eye tracking in 3D space. We propose a characterization protocol to assess the behavior of the accuracy of the system over the workspace of a robotic manipulator assistant. Applying this protocol to 33 subjects, we estimated the behavior of the error of the system relatively to the target position on a cylindrical workspace and to the acquisition time. Over our workspace, targets are located on average at 0.84 m and our method shows an accuracy 12.65 times better than the calculation of the 3D point of gaze. With the current accuracy, many potential applications become possible, such as visually controlled robotic assistants in the field of rehabilitation and adaptation engineering.

2017 ◽  
Author(s):  
Martin Leroux ◽  
Sofiane Achiche ◽  
Maxime Raison

Over the last decade, eye tracking systems have been developed and used in many fields, mostly to identify targets on a screen, i.e. a plane. For novel applications such as the control of robotic devices by the user vision, there is a great interest in developing methods base on eye tracking to identify target points in free three dimensional environments. The objective of this paper is to characterise the accuracy the eye tracking and computer vision combination that was designed recently to overcome many limitations of eye tracking in 3D space. We propose a characterization protocol to assess the behavior of the accuracy of the system over the workspace of a robotic manipulator assistant. Applying this protocol to 33 subjects, we estimated the behavior of the error of the system relatively to the target position on a cylindrical workspace and to the acquisition time. Over our workspace, targets are located on average at 0.84 m and our method shows an accuracy 12.65 times better than the calculation of the 3D point of gaze. With the current accuracy, many potential applications become possible, such as visually controlled robotic assistants in the field of rehabilitation and adaptation engineering.


2013 ◽  
Vol 7 (4) ◽  
Author(s):  
Ying Ying Wu ◽  
Ryan Lucking ◽  
Robert Oberreuter ◽  
Kenji Shimada

Distraction osteogenesis is a procedure to correct bone deformity by breaking the bone and slowly pulling the fragments apart to stimulate bone growth. General bone deformities are three-dimensional in nature, requiring correcting of bone angles in 3D space and also bone length. However, commercially available external fixators are either unable to simultaneously correct for both angular and length deformity or are bulky and require as many as six joints that are adjusted by patients. In this paper, we propose a novel concept of correcting a 3D bone deformity using only two active degrees of freedom (2DOF), or two patient controlled joints, by expressing the orientation deformity of the bone using the axis-angle representation and the length discrepancy as a translation in 3D space. This requires a new device design with two patient-controlled joints, a revolute joint and a prismatic joint, that can be placed in any orientation and position to allow multiple configurations of the device. This in turn allows it to correct for all typical 3D deformities. The aim of our project is to develop the 2DOF axial external fixator and an algorithm for a planner to find the optimal fixator configuration and the correction schedule for a given deformity. An algorithm for the placement of the two patient-controlled joints relative to the osteotomy site was developed. A set of test data extracted from a deformed sawbone was used to check the performance of the proposed computational method. The desired bone trajectory was defined as a straight line from initial to target position, and the optimal position of the revolute joint gives an error of only 0.8 mm. We conclude that the proposed 2DOF device and the computational planner can correct typical bone deformity and works well for the test case in simulation.


Author(s):  
Mária Babicsné-Horváth ◽  
Károly Hercegfi

Eye-tracking based usability testing and User Experience (UX) research are widespread in the development processes of various types of software; however, there exist specific difficulties during usability tests of three-dimensional (3D) software. Analysing the screen records with gaze plots, heatmaps of fixations, and statistics of Areas of Interests (AOI), methodological problems occur when the participant wants to rotate, zoom, or move the 3D space. The data gained regarded the menu bar is mainly interpretable; however, the data regarded the 3D environment is hardly so, or not at all. Our research tested four software applications with the aforementioned problem in mind: ViveLab and Jack Digital Human Modelling (DHM) and ArchiCAD and CATIA Computer Aided Design (CAD) software. Our original goal was twofold. Firstly, with these usability tests, we aimed to identify issues in the software. Secondly, we tested the utility of a new methodology which was included in the tests. This paper summarizes the results on the methodology based on individual experiments with different software applications. One of the main ideas behind the methodology adopted is to tell the participants (during certain subtasks of the tests) not to move the 3D space while they perform the given tasks at a certain point in the usability test. During the experiments, we applied a Tobii eye-tracking device, and after the task completion, each participant was interviewed. Based on these experiences, the methodology appears to be both useful and applicable, and its visualisation techniques for one or more participants are interpretable.


Author(s):  
Seok Lee ◽  
Juyong Park ◽  
Dongkyung Nam

In this article, the authors present an image processing method to reduce three-dimensional (3D) crosstalk for eye-tracking-based 3D display. Specifically, they considered 3D pixel crosstalk and offset crosstalk and applied different approaches based on its characteristics. For 3D pixel crosstalk which depends on the viewer’s relative location, they proposed output pixel value weighting scheme based on viewer’s eye position, and for offset crosstalk they subtracted luminance of crosstalk components according to the measured display crosstalk level in advance. By simulations and experiments using the 3D display prototypes, the authors evaluated the effectiveness of proposed method.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


Sign in / Sign up

Export Citation Format

Share Document