scholarly journals Radiation-induced changes in electrical conductivity of a wide range of copper alloys

1991 ◽  
Author(s):  
F.A. Garner ◽  
K.R. Anderson ◽  
T. Shikama
2015 ◽  
Vol 170 (11) ◽  
pp. 887-893 ◽  
Author(s):  
Qing Shan ◽  
Pingkun Cai ◽  
Xinlei Zhang ◽  
Jiatong Li ◽  
Shengnan Chu ◽  
...  

2015 ◽  
Vol 239 ◽  
pp. 110-148 ◽  
Author(s):  
Divya Singh ◽  
B. Bhattacharya ◽  
Hardev Singh Virk

Polymers are a class of materials widely used in different fields of applications. With imminent applications of polymers, the study of radiation induced changes in polymers has become an obvious scientific demand. The bombardment by ion beam radiations has become one of the most promising techniques in present day polymer research. When the polymers are irradiated, a variety of physical and chemical changes takes place due to energy deposition of the radiation in the polymer matrix. Scissoring, cross-linking, recombination, radical decomposition, etc. are some of the interesting changes that are obvious in polymers. The modification in polymer properties by irradiation depends mainly on the nature of radiation and the type of polymer used.Polymer electrolytes are obtained by modifying polymers by doping, complexing, or other chemical processes. In general, they suffer from low conductivity due to high crystallinity of the matrix. The effect of radiation on polymer electrolyte is expected to alter their crystalline nature vis-a-vis electrical properties. This review article shall elaborate modifications in the physical and chemical properties of polymer electrolytes and their composites. The variations in properties have been explored on PEO based polymer electrolyte and correlated with the parameters responsible for such changes. Also a comparison with different types of the polymers irradiated with a wide range of ion beams has been established.


2021 ◽  
pp. 074873042098732
Author(s):  
N. Kronfeld-Schor ◽  
T. J. Stevenson ◽  
S. Nickbakhsh ◽  
E. S. Schernhammer ◽  
X. C. Dopico ◽  
...  

Not 1 year has passed since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Since its emergence, great uncertainty has surrounded the potential for COVID-19 to establish as a seasonally recurrent disease. Many infectious diseases, including endemic human coronaviruses, vary across the year. They show a wide range of seasonal waveforms, timing (phase), and amplitudes, which differ depending on the geographical region. Drivers of such patterns are predominantly studied from an epidemiological perspective with a focus on weather and behavior, but complementary insights emerge from physiological studies of seasonality in animals, including humans. Thus, we take a multidisciplinary approach to integrate knowledge from usually distinct fields. First, we review epidemiological evidence of environmental and behavioral drivers of infectious disease seasonality. Subsequently, we take a chronobiological perspective and discuss within-host changes that may affect susceptibility, morbidity, and mortality from infectious diseases. Based on photoperiodic, circannual, and comparative human data, we not only identify promising future avenues but also highlight the need for further studies in animal models. Our preliminary assessment is that host immune seasonality warrants evaluation alongside weather and human behavior as factors that may contribute to COVID-19 seasonality, and that the relative importance of these drivers requires further investigation. A major challenge to predicting seasonality of infectious diseases are rapid, human-induced changes in the hitherto predictable seasonality of our planet, whose influence we review in a final outlook section. We conclude that a proactive multidisciplinary approach is warranted to predict, mitigate, and prevent seasonal infectious diseases in our complex, changing human-earth system.


2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 182
Author(s):  
Anna Wyrobisz-Papiewska ◽  
Jerzy Kowal ◽  
Elżbieta Łopieńska-Biernat ◽  
Paweł Nosal ◽  
Iwona Polak ◽  
...  

Ostertagia leptospicularis Assadov, 1953 was formally described in roe deer Capreolus capreolus and has been reported in a wide range of ruminants, including other Cervidae, as well as Bovidae. Nematode specimens derived from various host species exhibit morphological similarity; however, some differences can be observed. It is unclear if this is due to the differential reaction of one nematode species in different host species (i.e., host-induced changes) or because of distinct nematode species in these hosts (i.e., species complex). This paper focuses on specimens resembling O. leptospicularis f. leptospicularis and its closely related species (Ostertagia ostertagi f. ostertagi) collected from various hosts. Morphometric and molecular techniques were applied to assess host-induced changes in nematode morphology and to clarify its systematic classification. There was an overall effect of host species on measurements of nematodes resembling O. leptospicularis (both males and females), but the distinctiveness of the specimens from cattle Bos taurus were highlighted. The results obtained may suggest that the specimens of O. leptospicularis from cattle in Germany and cervids in central Europe belong to different strains. Furthermore, nematodes from the cervid strain appear to circulate within particular host species, which can be seen in the stated morphological variations.


2006 ◽  
Vol 46 (2) ◽  
pp. 183-193 ◽  
Author(s):  
John Crawshaw ◽  
Gerald Meeten

Sign in / Sign up

Export Citation Format

Share Document