Factors Affecting the Metabolite Productions in Endophytes: Biotechnological Approaches for Production of Metabolites

2020 ◽  
Vol 27 (11) ◽  
pp. 1855-1873 ◽  
Author(s):  
Viridiana Morales-Sánchez ◽  
Maria Fe Andrés ◽  
Carmen Elisa Díaz ◽  
Azucena González-Coloma

:Since 1980, many species and different strains from endophytic genera of Phomopsis, Fusarium, Pestaliopsis and Aspergillus have been studied because of their ability to produce medicinal compounds found in their host plants. Some of these medicinal agents such as Taxol, Brefeldine A, Camptothecin and Podophyllotoxin are being produced in large-scale after an optimization process. However, the potential of fungal endophytes to produce host-like medicinal compounds remains largely unexplored.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5895
Author(s):  
Maria Eduarda B. S. de Oliveira ◽  
Adilson Sartoratto ◽  
Jean Carlos Cardoso

The efficient production of plant-derived medicinal compounds (PDMCs) from in vitro plants requires improvements in knowledge about control of plant or organ development and factors affecting the biosynthesis pathway of specific PDMCs under in vitro conditions, leading to a realistic large-scale tool for in vitro secondary metabolite production. Thus, this study aimed to develop an in vitro technique, through the induction and proliferation of calli, for production of plant fresh weight, and to compare the PDMC profile obtained from the plants versus in vitro calli of Phyllanthus amarus. It was successfully possible to obtain and proliferate two types of calli, one with a beige color and a friable appearance, obtained in the dark using Murashige and Skoog (MS) medium plus 2,4-dichlorophenoxyacetic acid (2,4-D), and a second type with a green color, rigid consistency, and nonfriable appearance obtained under light conditions and MS medium plus 6-benzyladenine (6-BA). In vitro micropropagated plants that gave rise to calli were also acclimatized in a greenhouse and cultivated until obtaining the mass for PDMC analysis and used as a control. While the micropropagated-derived plants concentrated the lignans niranthin, nirtetralin, and phyllanthin, the Phyllanthus amarus calli proliferated in vitro concentrated a completely different biochemical profile and synthesis of compounds, such as betulone, squalene, stigmasterol, and β-sitosterol, in addition to others not identified by GC-MS database. These results demonstrate the possibility of applying the calli in vitro from Phyllanthus amarus for production of important PDMCs unlike those obtained in cultures of differentiated tissues from field plants.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


Much of the information which can be obtained about a plant virus agent is ultimately derived from the quantity as well as the type of the infections resulting from inoculations to suitable host plants. The number ofinfections obtained does not depend solely on the nature of the particular virus concerned. It is dependent on other variable factors, such as the efficiency of the means of infection introducing the virus, the susceptibility of the plants receiving it, and the concentration of the virus in the source from which it was obtained. In this paper a'n attempt has been made to estimate the effect of some of these variables on infection by insects.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Qinghua Li ◽  
Jintao Liu ◽  
Shilang Xu

As one-dimensional (1D) nanofiber, carbon nanotubes (CNTs) have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs) reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.


1987 ◽  
Vol 35 (2) ◽  
pp. 135 ◽  
Author(s):  
RB Hacker

Species responses to grazing and environmental factors were studied in an arid halophytic shrubland community in Western Australia. The grazing responses of major shrub species were defined by using reciprocal averaging ordination of botanical data, interpreted in conjunction with a similar ordination of soil chemical properties and measures of soil erosion derived from large-scale aerial photographs. An apparent small-scale interaction between grazing and soil salinity was also defined. Long-term grazing pressure is apparently reduced on localised areas of high salinity. Environmental factors affecting species distribution are complex and appear to include soil salinity, soil cationic balance, geomorphological variation and the influence of cryptogamic crusts on seedling establishment.


2000 ◽  
Vol 48 (1) ◽  
pp. 59 ◽  
Author(s):  
J. S. Cohn ◽  
R. A. Bradstock

Factors affecting the survival of post-fire germinants in mallee communities, in central western New South Wales, were examined. Experiments compared the relative effects of native and introduced herbivores (kangaroos, goats, rabbits), after small- and large-scale fires (20–50 and > 10 000 ha, respectively), with particular emphasis on edge effects, seedling clustering, topography and eucalypt canopy presence. The experiments (1985–1997) focused on common understorey species Acacia rigens Cunn. ex Don, A. wilhelmiana F.Muell. and Triodia scariosa N.T.Burb. subsp. scariosa, in mallee dominated by Eucalyptus species. Following a large fire (1985), high spring rainfall and rabbit grazing on A. rigens only, survival of Acacia species and T. scariosa remained relatively high 4 years later (60–70%). After small burns (1987, 1988), low spring rainfall and grazing by rabbits and kangaroos, survival of Acacia species declined to between 0 and 30% of the germinants by the second summer. In most cases, local extinction had occurred within 8 years. After small burns (1988, 1989) and low spring rainfall, the survival of T. scariosa declined to between 0 and 35% of germinants by the second summer (effect of grazing unknown). No consistent effect of edge, topography and eucalypt canopy was found. Survival of clustered Acacia seedlings was between 10 and 20% lower than unclustered seedlings. Given the high frequency of low rainfall and its interaction with grazing, prescribed burning of mallee for wildfire control and nature conservation may require the local elimination of rabbits and a reduction in kangaroo numbers, especially in the first spring and summer following seedling germination.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Lili Yang ◽  
Tong Heng ◽  
Guang Yang ◽  
Xinchen Gu ◽  
Jiaxin Wang ◽  
...  

The factors influencing the effective utilization coefficient of irrigation water are not understood well. It is usually considered that this coefficient is lower in areas with large-scale irrigation. With this background, we analyzed the effective utilization coefficient of irrigation water using the analytic hierarchy process using data from 2014 to 2019 in Shihezi City, Xinjiang. The weights of the influencing factors on the effective utilization coefficient of irrigation water in different irrigation areas were analyzed. Predictions of the coefficient’s values for different years were made by understanding the trends based on the grey model. The results show that the scale of the irrigation area is not the only factor determining the effective utilization coefficient of irrigation water. Irrigation technology, organizational integrity, crop types, water price management, local economic level, and channel seepage prevention are the most critical factors affecting the effective use of irrigation water. The grey model prediction results show that the effective utilization coefficient of farmland irrigation water will continuously increase and reach 0.7204 in 2029. This research can serve as a reference for government authorities to make scientific decisions on water-saving projects in irrigation districts in terms of management, operation, and investment.


Author(s):  
P. Glitse ◽  
B. V. Nyamadi ◽  
K. W. Darkwah ◽  
K. A. Mintah

The Ghana Irrigation Development Authority (GIDA) is a public sector organization established to promote agricultural growth through the provision of irrigation infrastructure and other agricultural water management techniques. Irrigated agriculture in Ghana is categorized into formal, informal or smallholder and large-scale commercial irrigation. Over the years, irrigation development in the country has been faced with a number of challenges, which necessitated the development of the National Irrigation Policy, Strategies and Regulatory Measures and the Ghana Agricultural Water Management Pre-Investment Reform Action Framework. A number of factors affecting irrigation development in the country include lack of capital, commitment by successive governments, cost of energy, access to land and credit, lack of technical know-how and encroachment, among others. Analysis of budget provided by government for public irrigation development was carried out using simple linear regression. Results indicate a bright prospect of irrigation development, with reforms under implementation. A minimum of GHS 633.43 million is required for release into the sub-sector by government together with investments from private sector in the next ten years to shift the balance towards positive growth. To solve the problem of inadequate funding of the sub-sector activities, it is recommended that the GIDA collaborates with Development Partners to fund projects and activities in line with their objectives. GIDA should develop effective programmes for building capacity of contractors involved in development of infrastructure. GIDA should deepen its collaboration with private investors under PPPs and convert electric and diesel/petrol powered irrigation pumps to solar powered ones.


Sign in / Sign up

Export Citation Format

Share Document