Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade

2020 ◽  
Vol 27 ◽  
Author(s):  
Muhammad Sohail ◽  
Wenna Guo ◽  
Zhiyong Li ◽  
Hui Xu ◽  
Feng Zhao ◽  
...  

: In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. And more to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the deepening of research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.

Polymer ◽  
2006 ◽  
Vol 47 (9) ◽  
pp. 2946-2955 ◽  
Author(s):  
Mariano Licciardi ◽  
Gaetano Giammona ◽  
Jianzhong Du ◽  
Steven P. Armes ◽  
Yiqing Tang ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
pp. 98-111 ◽  
Author(s):  
Darinka Gjorgieva Ackova ◽  
Tatjana Kanjevac ◽  
Lia Rimondini ◽  
Darko Bosnakovski

2021 ◽  
Vol 28 ◽  
Author(s):  
Wei-Wei Ren ◽  
Shi-Hao Xu ◽  
Li-Ping Sun ◽  
Kun Zhang

: Cancer still represents a leading threat to human health worldwide. The effective usage of anti-cancer drugs can reduce patients’ clinical symptoms and extend the life span. Current anti-cancer strategies include chemotherapy, traditional Chinese medicine, biopharmaceuticals, and the latest targeted therapy. However, due to the complexity and heterogeneity of tumors, serious side effects may result from the direct use of anti-cancer drugs. Besides, the current therapeutic strategies failed to effectively alleviate metastasized tumors. Recently, an ultrasound-mediated nano-drug delivery system has become an increasingly important treatment strategy. Due to its ability to enhance efficacy and reduce toxic side effects, it has become a research hotspot in the field of biomedicine. In this review, we introduced the latest research progress of the ultrasound-responsive nano-drug delivery systems and the possible mechanisms of ultrasound acting on the carrier to change the structure or conformation as well as to realize the controlled release. In addition, the progress in ultrasound responsive nano-drug delivery systems will also be briefly summarized.


2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2020 ◽  
Vol 21 (23) ◽  
pp. 9159
Author(s):  
Yanzhen Sun ◽  
Xiaodong Jing ◽  
Xiaoli Ma ◽  
Yinglong Feng ◽  
Hao Hu

Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.


Sign in / Sign up

Export Citation Format

Share Document