Ultrasound-Based Drug Delivery System

2021 ◽  
Vol 28 ◽  
Author(s):  
Wei-Wei Ren ◽  
Shi-Hao Xu ◽  
Li-Ping Sun ◽  
Kun Zhang

: Cancer still represents a leading threat to human health worldwide. The effective usage of anti-cancer drugs can reduce patients’ clinical symptoms and extend the life span. Current anti-cancer strategies include chemotherapy, traditional Chinese medicine, biopharmaceuticals, and the latest targeted therapy. However, due to the complexity and heterogeneity of tumors, serious side effects may result from the direct use of anti-cancer drugs. Besides, the current therapeutic strategies failed to effectively alleviate metastasized tumors. Recently, an ultrasound-mediated nano-drug delivery system has become an increasingly important treatment strategy. Due to its ability to enhance efficacy and reduce toxic side effects, it has become a research hotspot in the field of biomedicine. In this review, we introduced the latest research progress of the ultrasound-responsive nano-drug delivery systems and the possible mechanisms of ultrasound acting on the carrier to change the structure or conformation as well as to realize the controlled release. In addition, the progress in ultrasound responsive nano-drug delivery systems will also be briefly summarized.

2020 ◽  
Vol 20 (18) ◽  
pp. 2169-2189
Author(s):  
Shiyu Chen ◽  
Zhimei Song ◽  
Runliang Feng

Background: Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse pharmacokinetic property limit its clinical application. Objective: To review the recent progress on the PTX delivery systems. Methods: In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent progress on the nano-drug delivery system for PTX since 2011. Results: The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its activities against cancer are also comparable or high when compared with the commercial formulation. Conclusion: Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping or enhancing its activity and improving its pharmacokinetic property.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 837 ◽  
Author(s):  
Shi Su ◽  
Peter M. Kang

Nanotechnologies have attracted increasing attention in their application in medicine, especially in the development of new drug delivery systems. With the help of nano-sized carriers, drugs can reach specific diseased areas, prolonging therapeutic efficacy while decreasing undesired side-effects. In addition, recent nanotechnological advances, such as surface stabilization and stimuli-responsive functionalization have also significantly improved the targeting capacity and therapeutic efficacy of the nanocarrier assisted drug delivery system. In this review, we evaluate recent advances in the development of different nanocarriers and their applications in therapeutics delivery.


2020 ◽  
Vol 27 ◽  
Author(s):  
Muhammad Sohail ◽  
Wenna Guo ◽  
Zhiyong Li ◽  
Hui Xu ◽  
Feng Zhao ◽  
...  

: In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. And more to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the deepening of research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.


2021 ◽  
Author(s):  
Tanveer Hussain ◽  
Seeram Ramakrishna ◽  
Sharjeel Abid

Abstract Breast cancer is the most common type of cancer among women. Breast-conserving surgery (BCS) is becoming a preferred approach for treating non-invasive or early-stage breast cancer cases. However, local-regional recurrence (LRR) is one of the critical risk factors after BCS. As many as 10-20% of BCS cases may show LRR within 5 years and almost 50% within 10 years. Radiation therapy is one of the treatments used to prevent LRR after breast-conserving surgery. However, because of possible side-effects of radiation therapy, targeted drug delivery systems based on nanofibers loaded with anti-cancer drugs have been explored in recent years to control LRR after BCS. This paper aims to review different polymers and anti-cancer drugs used for developing nanofibrous drug delivery systems against other breast cancer cell lines. It was observed that the utilization of nanofibers scaffolds after mastectomy could decrease the recurrence of breast cancer cells to a great extent as these nanofibrous scaffolds release drugs in a sustained manner for a prolonged time. Besides, the side effects of chemotherapy on healthy cells could be avoided. To the best of our knowledge, no such review paper is available in the literature that focuses only on the nanofibers-based system for breast cancer therapy.


Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


Author(s):  
SARIPILLI RAJESWARI ◽  
VANAPALLI SWAPNA

Microsponges (MSPs) are at the forefront of the rapidly developing field of novel drug delivery systems which are gaining popularity due to their use for controlled release and targeted drug delivery. The microsponge delivery system (MDS) is a patented polymeric system consisting of porous microspheres typically 10-25 microns in diameter, loaded with an active agent. They are tiny sponge-like spherical particles that consist of a myriad of interconnecting voids within a non-collapsible structure with a large porous surface through which active ingredient is released in a controlled manner. Microsponge also hold a certification as one of the potential approaches for gastric retention where many oral dosage forms face several physiological restrictions due to non-uniform absorption pattern, inadequate medication release and shorter residence time in the stomach. This type of drug delivery system which is non-irritating, non-allergic, non-toxic, can suspend or entrap a wide variety of substances, and can then be incorporated into a formulated product such as gel, cream, liquid or powder that is why it is called as a “versatile drug delivery system”. It overcomes the drawbacks of other formulations such as frequency of dosing, drug reaction, incompatibility with environmental condition. These porous microspheres were exclusively designed for chronotherapeutic topical drug delivery but attempt to utilize them for oral, pulmonary and parenteral drug delivery were also made. The present review elaborates about the multifunctional microsponge technology including its preparation, characterization, evaluation methods along with recent research and future potential.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Yan ◽  
Yue Jin ◽  
Chuanxiang Zhao

AbstractNanoparticles as drug delivery systems can alter the drugs' hydrophilicity to affect drug uptake and efflux in tissues. They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecular structure, and tunable pore size can improve the encapsulation drug's stability under harsh conditions. Besides, the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to effectively respond to the unique tumor microenvironment (TEM), such as high H2O2 levels, hypoxia, and high concentration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circulation and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive MOFs as drug delivery systems for tumor therapy under different stimuli.


2020 ◽  
Vol 11 (2) ◽  
pp. 2505-2518
Author(s):  
Sindhuja Devaraj ◽  
Ganesh GNK

Nanoparticulate drug delivery system are the rapidly developing system, and nanoparticles are present in the size range of 1-100nm. Nanoparticles composed of various thermal, electrical, and optical property. Nanoparticles offers the potential advantages over the traditional dosage forms it is ascribable to the properties of nanoparticles. Nanoparticulate drug delivery system ensures the site-specific delivery of a drug(Targeting drug delivery) and aids in improving the efficacy of the new as well as old drugs and has the potential in crossing the various physiological barriers and also improves the therapeutic index of the drugs and increases the patient compliance. The objectives of this review is to classify the nanoparticles based on the different groups, surface properties of nanoparticles, describe the strategies of drug targeting, the necessity of nanoparticles their general method of preparation, different methods used in characterization, self- assembly and mechanism of drug release in a systemic manner. The potential advantages and limitations of various nanoparticulate drug delivery systems are also discussed elaborately.


Author(s):  
Tushar N. Sonawane ◽  
Pradip D. Dhangar ◽  
Sagar D Patil ◽  
Azam Z. Shaikh

Novel Drug Delivery Systems are one of the widely use delivery system in the presence scenario. Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. The novel drug delivery system is Increases bioavailability and it Can be used for long-term treatments of chronic illness, Sustained maintenance of plasma drug levels as well as it Decreased adverse drug effects in the total amount of drugs required thus reducing side effects it Improved patient compliance due to reduction in number and frequency of doses required. There is less damage sustained by normal tissue due to targeted drug delivery. In this paper our main focus to give the throughout knowledge of some newer (Novel drug delivery system) to understand the concept of the Novel dossage form.


2018 ◽  
Vol 10 (2) ◽  
pp. 1 ◽  
Author(s):  
Revathy B. Menon ◽  
Lakshmi V. S. ◽  
Aiswarya M. U. ◽  
Keerthana Raju ◽  
Sreeja C. Nair

A novel drug delivery system is the one that ensures optimum dose at the right time, at the right location. Porphysomes are among those drug delivery systems. Porphysomes are a means of vesicular drug delivery systems. They are liposome-like structures composed completely of porphyrin lipid. The porphysomes encapsulates the active medicament in vesicular structure. They are having an aqueous core which can be loaded with the medicament. They have the capacity to destroy the disease tissues. They absorb the heat in the near infrared region and release this heat to destroy the diseased tissues. Porphysomes are having immense applications in the field of positron-electron therapy (PET), photoacoustic imaging, photothermal therapy etc. This review article discusses regarding the Porphysome-the drug delivery system, its advantages and disadvantages, composition, method of preparation, applications and various aspects related to the porphysomal drug delivery.


Sign in / Sign up

Export Citation Format

Share Document