Vitamin D/VDR in acute kidney injury: a potential therapeutic target

2020 ◽  
Vol 27 ◽  
Author(s):  
Siqing Jiang ◽  
Lihua Huang ◽  
Wei Zhang ◽  
Hao Zhang

: Despite many strategies and parameters used in clinical practice, the incidence and mortality of acute kidney injury (AKI) are still high with poor prognosis. With the development of molecular biology, the role of vitamin D and vitamin D receptor (VDR) in AKI is drawing increasing attention. Accumulated researches have suggested that Vitamin D deficiency is a risk factor of both clinical and experimental AKI, and vitamin D/VDR could be a promising therapeutic target against AKI. However, more qualitative clinical researches are needed to provide stronger evidence for clinical application of vitamin D and VDR agonists in the future. Issues like the route and dosage of administration also await more attention. The present review aims to summarize the current works on the role of vitamin D/VDR in AKI and try to provide some new insight of its therapeutic potential.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Zhaoxin Hu ◽  
Hao Zhang ◽  
Shi-kun Yang ◽  
Xueqin Wu ◽  
Dong He ◽  
...  

Acute kidney injury (AKI) is a heterogeneous group of critical disease conditions with high incidence and mortality. Vasoconstriction, oxidative stress, apoptosis, and inflammation are generally thought to be the main pathogenic mechanisms of AKI. Ferroptosis is a type of iron-dependent nonapoptotic cell death characterized by membrane lipid peroxide accumulation and polyunsaturated fatty acid consumption, and it plays essential roles in many diseases, including cancers and neurologic diseases. Recent studies have revealed an emerging role of ferroptosis in the pathophysiological processes of AKI. Here, in the present review, we summarized the most recent discoveries on the role of ferroptosis in the pathogenesis of AKI as well as its therapeutic potential in AKI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Li ◽  
Chao Yu ◽  
Shougang Zhuang

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme that catalyzes the addition of methyl groups to histone H3 at lysine 27, leading to gene silencing. Mutation or over-expression of EZH2 has been linked to many cancers including renal carcinoma. Recent studies have shown that EZH2 expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury (AKI), renal fibrosis, diabetic nephropathy, lupus nephritis (LN), and renal transplantation rejection. The pharmacological and/or genetic inhibition of EZH2 can alleviate AKI, renal fibrosis, and LN, but potentiate podocyte injury in animal models, suggesting that the functional role of EZH2 varies with renal cell type and disease model. In this article, we summarize the role of EZH2 in the pathology of renal injury and relevant mechanisms and highlight EZH2 as a potential therapeutic target for kidney diseases.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 338 ◽  
Author(s):  
Ying Wang ◽  
Juan Cai ◽  
Chengyuan Tang ◽  
Zheng Dong

Acute kidney injury (AKI) is a major kidney disease characterized by rapid decline of renal function. Besides its acute consequence of high mortality, AKI has recently been recognized as an independent risk factor for chronic kidney disease (CKD). Maladaptive or incomplete repair of renal tubules after severe or episodic AKI leads to renal fibrosis and, eventually, CKD. Recent studies highlight a key role of mitochondrial pathology in AKI development and abnormal kidney repair after AKI. As such, timely elimination of damaged mitochondria in renal tubular cells represents an important quality control mechanism for cell homeostasis and survival during kidney injury and repair. Mitophagy is a selective form of autophagy that selectively removes redundant or damaged mitochondria. Here, we summarize our recent understanding on the molecular mechanisms of mitophagy, discuss the role of mitophagy in AKI development and kidney repair after AKI, and present future research directions and therapeutic potential.


2020 ◽  
Vol 28 (3) ◽  
pp. 213-221 ◽  
Author(s):  
Md Jamal Uddin ◽  
Debra Dorotea ◽  
Eun Seon Pak ◽  
Hunjoo Ha

2021 ◽  
Vol 7 ◽  
Author(s):  
Spyridon Graidis ◽  
Theodosios S. Papavramidis ◽  
Maria Papaioannou

Background: Acute kidney injury (AKI) constitutes a multi-factorially caused condition, which significantly affects kidney function and can lead to elevated risk of morbidity and mortality. Given the rising scientific evidence regarding vitamin D's (VitD's) multisystemic role, the connection between AKI and VitD is currently being studied, and the complex relation between them has started to be unraveled.Methods: A systematic review had been conducted to identify the pathogenetic relation of VitD and AKI and the potential role of VitD as a biomarker and therapeutic–renoprotective factor.Results: From 792 articles, 74 articles were identified that fulfilled the inclusion criteria. Based on these articles, it has been found that not only can VitD disorders (VitD deficiency or toxicity) cause AKI but, also, AKI can lead to great disruption in the metabolism of VitD. Moreover, it has been found that VitD serves as a novel biomarker for prediction of the risk of developing AKI and for the prognosis of AKI's severity. Finally, animal models showed that VitD can both ameliorate AKI and prevent its onset, suggesting its renoprotective effect.Conclusion: There is a complex two-way pathogenetic relation between VitD disorders and AKI, while, concomitantly, VitD serves as a potential novel predictive–prognostic biomarker and a treatment agent in AKI therapy.


2021 ◽  
Vol 25 (20) ◽  
pp. 9863-9877
Author(s):  
Ling Li ◽  
Shuyun Liu ◽  
Yijie Zhou ◽  
Meng Zhao ◽  
Yizhuo Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document