Trienamines for the Organocatalytic Synthesis of Nitrogen-Containing Heterocycles

2019 ◽  
Vol 23 (10) ◽  
pp. 1078-1089 ◽  
Author(s):  
Jessica R. Gutiérrez Cano ◽  
Julio López ◽  
Miguel A. Vázquez ◽  
David Cruz Cruz ◽  
Clarisa Villegas Gómez

Nitrogen-containing heterocycles (NCH), constitute an important group of molecules, which are widely extended in whole chemical space. These compounds are of great interest due to their diverse biological activities. Currently, many compounds derived from NCH are used as powerful drugs for the treatment of diseases ranging from bactericides to anticancer agents. During last decade, the enantioselective synthesis of numerous heterocyclic compounds has been achieved through the use of chiral organocatalysts. The present contribution explores the application of the aminocatalysis towards the synthesis of NCH, particularly through the trienamine catalysis.

2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


Author(s):  
Lucas F. E. Moor ◽  
Thatyana R. A. Vasconcelos ◽  
Raisa da R. Reis ◽  
Ligia S. S. Pinto ◽  
Thamires M. da Costa

: Quinoline and its derivatives comprise an important group of heterocyclic compounds that exhibits a wide range of pharmacological properties such as antibacterial, antiviral, anticancer, antiparasitic, anti-Alzheimer and anticholesterol. In fact, the quinoline nucleus is found in the structure of many drugs and in rational design in medicinal chemistry for the discovery of novel bioactive molecules. Persistent efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. This review highlights some discoveries on the development of quinoline-based compounds in recent years (2013-2019) focusing on their biological activities, including anticancer, antitubercular, antimalarial, anti-ZIKV, anti-DENV, anti-Leishmania and anti-Alzheimer’s disease.


2012 ◽  
Vol 67 (10) ◽  
pp. 1021-1029 ◽  
Author(s):  
Magnus Rueping ◽  
Stefan A. Moreth ◽  
Michael Bolte

The enantioselective synthesis of 2-aryl-substituted 2,3-dihydroquinolin-4-ones, a class of heterocyclic compounds with interesting biological activities, has been achieved through a Brønsted acidcatalyzed enantioselective intramolecular Michael addition. The products are available in moderate to high yields and with good enantioselectivities.


2016 ◽  
Vol 88 (6) ◽  
pp. 579-594 ◽  
Author(s):  
Clementina M. M. Santos ◽  
Diana C. G. A. Pinto ◽  
Vera L. M. Silva ◽  
Artur M. S. Silva

AbstractArylxanthones and arylacridones although not yet found in nature are becoming an important group of heterocyclic compounds due to their promising biological activities. Their central cores, xanthone and acridone, are recognized as interesting motifs for drug development mainly to be used in antitumour chemotherapy. The synthesis of this type of compounds is still scarce but several successful examples were recently published and a large variety of arylated xanthone and acridone derivatives were prepared. A systematic survey of the literature dedicated to their synthesis will be presented and discussed in this review.


2021 ◽  
Vol 5 (4) ◽  
pp. 73
Author(s):  
Ram Karan ◽  
Pooja Agarwal ◽  
Mukty Sinha ◽  
Neelima Mahato

This paper intended to explore and discover recent therapeutic agents in the area of medicinal chemistry for the treatment of various diseases. Heterocyclic compounds represent an important group of biologically active compounds. In the last few years, heterocyclic compounds having quinazoline moiety have drawn immense attention owing to their significant biological activities. A diverse range of molecules having quinazoline moiety are reported to show a broad range of medicinal activities like antifungal, antiviral, antidiabetic, anticancer, anti-inflammatory, antibacterial, antioxidant and other activities. This study accelerates the designing process to generate a greater number of biologically active candidates.


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>


2020 ◽  
Vol 11 (3) ◽  
pp. 3377-3383
Author(s):  
Arulmozhi R ◽  
Abirami N ◽  
Helen P Kavitha ◽  
Arulmurugan S ◽  
Vinoth Kumar J

The creation of novel drugs containing a tetrazole ring as a structural fragment has contributed considerably to the outstanding achievements of the pharmaceutical chemistry in the last decade. Tetrazoles are the heterocyclic compounds having diverse biological activities such as analgesic, antiinflammation, antimicrobial, anticancer, antidiabetic, etc., and an impending source in biosciences. In this paper, the authors describe the synthesis of novel tetrazoles from N, N-( 6-Phenyl-1,3,5-triazine-2,4-diyl) dibenzamide (PTDDB) and 2-phenyl-4, 6-di(2H-tetrazole-2-yl)-1,3,5-triazine(5a-i) were prepared per the proposed scheme. A new class of tetrazole heterocycles were synthesised and characterised. I n vivo analysis was carried out on the analgesic property of synthesised tetrazole derivatives (5a, 5b, 5c). Characterisation studies such as IR, 1H NMR, 13C NMR, Mass and elemental analysis were performed for the synthesised tetrazole derivatives. Some of the tetrazole derivatives 5a, 5b, and 5c were tested for anodyne activity using morphine as the standard drug. The data reveals that all the three compounds 5a, 5b and 5c taken for the study show analgesic activity by hot plate method and tail flick methods. Among tested compounds, compound 5c is found to have potent analgesic (anodyne) activity. The results of the study indicate that the sample taken for the study show fairly good business using morphine as the standard drug.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


Author(s):  
Harish Rajak ◽  
Murli Dhar Kharya ◽  
Pradeep Mishra

There are vast numbers of pharmacologically active heterocyclic compounds in regular clinical use. The presence of heterocyclic structures in diverse types of compounds is strongly indicative of the profound effects such structure exerts on physiologic activity, and recognition of this is abundantly reflected in efforts to find useful synthetic drugs. The 1,3,4-oxadiazole nucleus has emerged as one of the potential pharmacophore responsible for diverse pharmacological properties. Medical Literature is flooded with reports of a variety of biological activities of 2,5-Disubstituted-1,3,4-oxadiazoles. The present work is an attempt to summarize and enlist the various reports published on biologically active 2,5-disubstituted-1,3,4-oxadiazoles.


2020 ◽  
Vol 26 (41) ◽  
pp. 7337-7371 ◽  
Author(s):  
Maria A. Chiacchio ◽  
Giuseppe Lanza ◽  
Ugo Chiacchio ◽  
Salvatore V. Giofrè ◽  
Roberto Romeo ◽  
...  

: Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.


Sign in / Sign up

Export Citation Format

Share Document